Шістнадцятикомірник

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку
Шістнадцятикомірник

Діаграма Шлегеля: проєкція (перспектива) шістнадцятикомірника в тривимірний простір
Тип Правильний чотиривимірний політоп
Символ Шлефлі {3,3,4}
Комірок 16
Граней 32
Ребер 24
Вершин 8
Вершинна фігура Правильний октаедр
Двоїстий політоп Тесеракт
Проєкція обертового шістнадцятикомірника в тривимірний простір

Правильний шістнадцятикомірник, або просто шістнадцятикомірник[1] — один з правильних багатокомірників у чотиривимірному просторі. Відомий також під іншими назвами: гексадекахор (від дав.-гр. ἕξ — «шість», δέκα — «десять» і χώρος — «місце, простір»), чотиривимірний гіпероктаедр (оскільки є аналогом тривимірного октаедра), чотиривимірний кокуб[2] (оскільки двоїстий чотиривимірному гіперкубу), чотиривимірний ортоплекс.

Відкрив Людвіг Шлефлі в середині 1850-х років[3]. Символ Шлефлі шістнадцятикомірника — {3,3,4}.

Обмежений 16 тривимірними комірками — однаковими правильними тетраедрами. Кут між двома суміжними комірками дорівнює

Його 32 двовимірні грані — однакові правильні трикутники. Кожна грань розділяє 2 прилеглі до неї комірки.

Має 24 ребра однакової довжини. На кожному ребрі сходяться по 4 грані і по 4 комірки.

Має 8 вершин. У кожній вершині сходяться по 6 ребер, по 12 граней і по 8 комірок. Будь-яка вершина з'єднана ребром з будь-якою іншою — крім вершини, симетричної їй відносно центра багатокомірника.

Шістнадцятикомірник можна уявити як дві однакові правильні чотиривимірні піраміди, прикладені одна до одної своїми октаедричними основами, — або як чотиривимірну дуопіраміду[en], побудовану на двох квадратах.

В координатах

[ред. | ред. код]

Шістнадцятикомірник можна розташувати в декартовій системі координат так, щоб його 8 вершини мали координати

При цьому перерізами багатокомірника 6 координатними площинами будуть 6 квадратів, вершини і ребра яких — відповідно вершини і ребра багатокомірника.

Кожна з 16 комірок багатокомірника буде розташовуватися в одному з 16 ортантів чотиривимірного простору.

Початок координат буде центром симетрії шістнадцятикомірника, а також центром його вписаної, описаної і напівуписаних тривимірних гіперсфер.

Поверхня шістнадцятикомірника при цьому буде геометричним місцем точок чиї координати задовольняють рівняння

а внутрішність багатокомірника — геометричним місцем точок, для яких

Ортогональні проєкції на площину

[ред. | ред. код]

Метричні характеристики

[ред. | ред. код]

Якщо шістнадцятикомірник має ребро довжини то його чотиривимірний гіпероб'єм і тривимірна гіперплоща поверхні виражаються відповідно як

Радіус описаної тривимірної гіперсфери (що проходить через усі вершини багатокомірника) в цьому випадку відповідає

радіус зовнішньої напівуписаної гіперсфери (що дотикається до всіх ребер у їх серединах) -

радіус внутрішньої напівуписаної гіперсфери (що дотикається до всіх граней у їх центрах) -

радіус вписаної гіперсфери (що дотикається до всіх комірок у їх центрах) -

Заповнення простору

[ред. | ред. код]

Шістнадцятикомірниками можна замостити чотиривимірний простір без проміжків і накладень.

Примітки

[ред. | ред. код]
  1. Д. К. Бобылёв. Четырехмерное пространство // Энциклопедический словарь Брокгауза и Ефрона : в 86 т. (82 т. и 4 доп. т.). — СПб., 1890—1907. (рос. дореф.)
  2. Е. Ю. Смирнов. Группы отражений и правильные многогранники. [Архівовано 27 січня 2021 у Wayback Machine.] — М.: МЦНМО, 2009. — С. 44.
  3. George Olshevsky. Hexadecachoron // Glossary for Hyperspace.

Посилання

[ред. | ред. код]