Розв'язна група

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку

В абстрактній алгебрі розв'язні групи  — групи що відіграють вирішальну роль в теорії Галуа. Поняття розв'язної групи виникло для опису властивостей груп автоморфізмів тих поліномів, розв'язки яких можуть бути записані у радикалах.

Визначення

Група G називається розв'язною, якщо існує спадний ланцюг підгруп:

такий, що є нормальною підгрупою а також факторгрупи для є абелевими.

Властивості

  • Якщо H — нормальна підгрупа в G, H розв'язна і факторгрупа G / H розв'язна, тоді і G розв'язна. Зокрема якщо дві групи розв'язні, то їх прямий добуток (і навіть напівпрямий добуток) розв'язний.
  • Всяка підгрупа і факторгрупа розв'язної групи розв'язні.
  • Якщо порядок скінченної групи ділиться лише на два прості числа, то така група розв'язна.

Приклади

Ланцюги нормальних підгруп :


Джерела

  • Е. Артін (1963). Теорія Галуа. пер. з нім. В.А. Вишенського. Київ: Радянська школа. с. 98. (укр.)
  • Курош А. Г. Теория групп. — 3-е изд. — Москва : Наука, 1967. — 648 с. — ISBN 5-8114-0616-9.(рос.)