Перейти до вмісту

Теорема про базисний мінор

Матеріал з Вікіпедії — вільної енциклопедії.
Версія від 22:49, 31 грудня 2021, створена Олюсь (обговорення | внесок)
(різн.) ← Попередня версія | Поточна версія (різн.) | Новіша версія → (різн.)

Теорема про базисний мінор

[ред. | ред. код]
  1. Рядки ненульової матриці (існує не нульовий елемент) на яких будується її базисний мінор є лінійно незалежними.
  2. Всі інші рядки матриці лінійно виражаються через них.

Доведення

[ред. | ред. код]
  1. Якби базисні рядки були лінійно залежними то з допомогою еквівалентних перетворень можна було б одержати нульовий рядок, що суперечить тому, що базовий мінор не дорівнює нулю.
  2. За допомогою довільного не базисного рядка (нехай його номер ) та довільного стовбця матриці (нехай його номер ) утворимо оточуючий мінор для базисного. Він буде дорівнювати нулю. Розклавши його -му стовпцю (теорема Лапласа), отримаємо:

оскільки алгебраїчне доповнення рівне нашому базовому мінору з точністю до знака, отже тому розділимо весь вираз на нього:

Отже -ий рядок є лінійною комбінацією базових рядків з коефіцієнтами .

Див. також

[ред. | ред. код]

Джерела

[ред. | ред. код]