Тверде тіло: відмінності між версіями

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку
[перевірена версія][перевірена версія]
Вилучено вміст Додано вміст
Sanya3 (обговорення | внесок)
м новий ключ сортування для Категорія:Тверде тіло: "*" з допомогою HotCat
Рядок 59: Рядок 59:


=== Електричні та магнітні властивості ===
=== Електричні та магнітні властивості ===
В залежності від величини [[питомий опір|питомого опору]] тверді тіла поділяються на [[провідник]]и та [[діелектрик]]и, проміжне положення між якими займають [[напівпровідник]]и. Напівпровідники мають малу [[електропровідність]], однак для них характерне її зростання з температурою. Електричні властивості твердих тіл пов'язані з їхньою [[електронна структура|електронною структурою]]. Для діелектриків властива щілина в [[енергетичний спектр|енергетичному спектрі]] [[електрон]]ів, яку у випадку кристалічних твердих тіл називають [[заборонена зона|забороненою зоною]]. Це область значень енергії, яку електрони в твердому тілі не можуть мати. В діелектриків усі електронні стани, нижче від щілини заповнені, і завдяки [[принцип Паулі|принципу Паулі]] електрони не можуть переходити із одного стану в інший, чим зумовлена відсутність провідності. Провідність напівпровідників дуже сильно залежить від [[домішка|домішок]] - [[акцептор електрона|акцепторів]] та [[донор електрона|донорів]].
В залежності від величини [[питомий опір|питомого опору]] тверді тіла поділяються на [[провідник]]и та [[діелектрик]]и, проміжне положення між якими займають [[напівпровідник]]и. Напівпровідники мають малу [[електропровідність]], однак для них характерне її зростання з температурою. Електричні властивості твердих тіл пов'язані з їхньою [[електронна структура|електронною структурою]]. Для діелектриків властива щілина в [[енергетичний спектр|енергетичному спектрі]] [[електрон]]ів, яку у випадку кристалічних твердих тіл називають [[заборонена зона|забороненою зоною]]. Це область значень енергії, яку електрони в твердому тілі не можуть мати. В діелектриків усі електронні стани, нижче від щілини заповнені, і завдяки [[принцип Паулі|принципу Паулі]] електрони не можуть переходити із одного стану в інший, чим зумовлена відсутність провідності. Провідність напівпровідників дуже сильно залежить від [[Легуюча домішка|домішок]] - [[акцептор електрона|акцепторів]] та [[донор електрона|донорів]].


Існує певний клас твердих тіл, для яких характерна іонна провідність. Ці матеріали називають [[суперіоніки|суперіоніками]]. Здебільшого це [[іонний кристал|іонні кристали]], в яких іони одного сорту можуть доволі вільно рухатися між непорушною ґраткою іонів іншого сорту.
Існує певний клас твердих тіл, для яких характерна іонна провідність. Ці матеріали називають [[суперіоніки|суперіоніками]]. Здебільшого це [[іонний кристал|іонні кристали]], в яких іони одного сорту можуть доволі вільно рухатися між непорушною ґраткою іонів іншого сорту.

Версія за 10:02, 19 березня 2014

Atoms of Si and O; each atom has the same number of bonds, but the overall arrangement of the atoms is random.
Regular hexagonal pattern of Si and O atoms, with a Si atom at each corner and the O atoms at the centre of each side.
Схематичне зображення атомної структури невпорядкованого аморфного (зліва) та впорядкованого кристалічного (справа) твердого тіла.

Тверде́ ті́лоагрегатний стан речовини, що характеризується стабільністю форми на відміну від інших агрегатних станів  рідини та газу. Атоми твердих тіл більшість часу проводять в околі певних рівноважних положень, здійснюючи тільки незначні теплові коливання.

Тверді тіла вивчають: окрема область фізики — фізика твердого тіла, хіміїхімія твердого тіла, матеріалознавство.

Класифікація твердих тіл

За типом упорядкування атомів розрізняють кристалічні і аморфні тверді тіла. Кристали характеризуються наявністю просторової періодичності в розміщенні рівноважних положень коливань атомів, тобто наявністю кристалічної гратки. Атоми аморфних твердих тіл коливаються поблизу невпорядковано розміщених точок.

За типом зв’язку між атомами розрізняють тверді тіла з ковалентним, іонним, металічним зв’язками тощо.

Електричні, магнітні і деякі інші властивості твердих тіл визначаються переважно характером руху валентних електронів його атомів. У зв’язку з цим тверді тіла поділяються за електричними властивостями на діелектрики, напівпровідники, метали, сегнетоелектрики; за магнітними — на діамагнетики, парамагнетики, феромагнетики, антиферомагнетики.

Історична довідка

Незважаючи на те, що тверді тіла (метали, мінерали) досліджувались давно, всебічне вивчення та систематизація інформації про їх властивості розпочалось з 17 століття. Починаючи з цього часу було відкрито низку емпіричних законів, що описували вплив на тверде тіло механічних сил, зміни температури, світла, електро-магнітних полів і т.д. Були сформульовані:

Уже у першій половині 19 ст. було сформульовано основні положення теорії пружності, для якої характерним є уява про тверде тіло як про суцільне середовище.

Цілісне уявлення про кристалічну структуру твердих тіл, як сукупності атомів, впорядковане розміщення яких у просторі забезпечується силами взаємодії було сформоване Огюстом Браве у 1848 році, хоча перші ідеї такого роду висловлювались у трактатах Ніколасом Стено (англ. Nicolas Steno, дан. Niels Stensen) (1669), Рене—Жустом Аюї (Гаюї) (фр. René Just Haüy) (1784), Ісааком Ньютоном у роботі «Математичні начала натуральної філософії» (1686), у якій розрахована швидкість звуку у ланцюжку пружно пов'язаних часток, Даніелем Бернуллі (1727), Оґюстеном-Луї Коші (1830) та ін.

Фазові переходи

При підвищенні температури тверді тіла переходять у рідкий або газоподібний стан. Перехід твердого тіла в рідину називається плавленням, а перехід у газоподібний стан, минаючи рідкий,— сублімацією. Перехід до твердого тіла (при зниженні температури) — кристалізація, до аморфної фази — склування.

Існують також фазові переходи між твердотільними фазами, при яких змінюється внутрішня структура твердих тіл, стаючи упорядкованішою при пониженні температури.

Фізичні властивості

Під фізичними властивостями твердих тіл розуміється їх специфічна поведінка при впливі певних сил і полів. Існує три основних способи впливу на тверді тіла, відповідні трьом основним видам енергії: механічний, термічний і електромагнітний. Відповідно виділяють три основних групи фізичних властивостей.

Механічні властивості зв’язують механічні напруження і деформації тіла, які відповідно до результатів широких досліджень механічних і реологічних властивостей твердих тіл, виконаних школою академіка П. О. Ребіндера, можна поділити на пружні, міцнісні, реологічні і технологічні. Крім того, при впливі на тверді тіла рідин або газів виявляються їх гідравлічні і газодинамічні властивості.

До термічних відносять властивості, які виявляються під впливом теплових полів. До електромагнітних властивостей умовно можна віднести радіаційні, що проявляються при впливі на тверде тіло потоків мікрочастинок або електромагнітних хвиль значної жорсткості (рентгенівських, гамма-промені).

Механічні властивості

Загалом зберігаючи форму, тверді тіла деформуються під впливом зовнішніх сил. В залежності від величини прикладеної сили деформація може бути пружною, пластичною або руйнівною. При пружній деформації тіло повертає собі початкову форму після зняття прикладених сил. Відклик твердого тіла на прикладене зусилля описується модулями пружності. Відмінною рисою твердого тіла в порівнянні з рідинами та газами є те, що воно чинить опір не тільки розтягу та стисканню, а також зсуву, згину й крученню.

При пластичній деформації початкова форма не зберігається. Характер деформації залежить також від часу, впродовж якого діє зовнішня сила. Тверде тіло може деформуватися пружно при коротокочасній дії, але пластично, якщо зовнішні сили діють тривалий час. Така поведінка називається повзучістю. Однією з характеристик деформації є твердість тіла - здатність опиратися проникненню в нього інших тіл.

Кожне тверде тіло має властивий йому поріг деформації, після якої наступає руйнування. Властивість твердого тіла опиратися руйнуванню характеризується міцністю. При руйнуванні в твердому тілі з'являються і розповсюджуються тріщини, які врешті-решт призводять до розлому.

До механічних властивостей твердого тіла належить також його здатність проводити звук, який є хвилею, що переносить локальну деформацію з одного місця в інше. На відміну від рідин та газів у твердому тілі можуть розповсюджуватися не тільки повздовжні звукові хвилі, а й поперечні, що зв'язано з опором твердого тіла деформації зсуву. Швидкість звуку в твердих тілах загалом вища, ніж у газах, зокрема в повітрі, оскільки міжатомна взаємодія набагато сильніша. Швидкість звуку в кристалічних твердих тілах характеризується анізотропією, тобто залежністю від напрямку поширення.

Теплові властивості

Найважливішою тепловою властивістю твердого тіла є температура плавлення - температура, при якій відбувається перехід у рідкий стан. Іншою важливою характеристикою плавлення є прихована теплота плавлення. На відміну від кристалів, у аморфних твердих тіл перехід до рідкого стану із підвищенням температури відбувається поступово. Його характеризують температурою склування - температурою, вище якої матеріал майже повністю втрачає пружність і стає дуже пластичним.

Зміна температури викликає деформацію твердого тіла, здебільшого підвищення температури призводить до розширення. Кількісно вона характеризується коефіцієнтом теплового розширення. Теплоємність твердого тіла залежить від температури, особливо при низьких температурах, однак в області кімнатних температур і вище, багато твердих тіла мають приблизно сталу теплоємність (закон Дюлонга-Пті). Перехід до сталої залежності теплоємності від температури відбувається при характерній для кожного матеріалу температурі Дебая. Від температури залежать також інші характеристики твердотільних матеріалів, зокрема механічні: пластичність, плинність, міцність, твердість.

Електричні та магнітні властивості

В залежності від величини питомого опору тверді тіла поділяються на провідники та діелектрики, проміжне положення між якими займають напівпровідники. Напівпровідники мають малу електропровідність, однак для них характерне її зростання з температурою. Електричні властивості твердих тіл пов'язані з їхньою електронною структурою. Для діелектриків властива щілина в енергетичному спектрі електронів, яку у випадку кристалічних твердих тіл називають забороненою зоною. Це область значень енергії, яку електрони в твердому тілі не можуть мати. В діелектриків усі електронні стани, нижче від щілини заповнені, і завдяки принципу Паулі електрони не можуть переходити із одного стану в інший, чим зумовлена відсутність провідності. Провідність напівпровідників дуже сильно залежить від домішок - акцепторів та донорів.

Існує певний клас твердих тіл, для яких характерна іонна провідність. Ці матеріали називають суперіоніками. Здебільшого це іонні кристали, в яких іони одного сорту можуть доволі вільно рухатися між непорушною ґраткою іонів іншого сорту.

При низьких температурах для деяких твердих тіл властива надпровідність — здатність проводити електричний струм без опору.

Існує клас твердих тіл, які можуть мати спонтанну поляризаціюпіроелектрики. Якщо ця властивість характерна тільки для однієї з фаз, що існує в певному проміжку температур, то такі матеріали називаються сегнетоелектриками. Для п'єзоелектриків характерний сильний зв'язок між поляризацією і механічною деформацією.

Феромагнетикам властиве існування спонтанного магнітного моменту.

Оптичні властивості твердих тіл дуже різноманітні. Метали здебільшого мають високий коефіцієнт відбиття світла у видимій області спектру, багато діелектриків прозорі, як, наприклад, скло. Часто колір того чи іншого твердого тіла зумовлений поглинанням світла домішками. Для напівпровідників та діелектриків характерна фотопровідність — збільшення електропровідності при освітленні.

Ідеалізації твердого тіла у науках

Тверді тіла, що зустрічаються у природі, характеризуються нескінченною множиною різноманітних властивостей, яка постійно поповнюється.

У залежності від поставлених перед певною наукою завдань є важливими лише окремі властивості твердого тіла, інші — несуттєві. Наприклад, при дослідженні міцності сталі її магнітні властивості практично ролі не відіграють.

Для простоти вивчення реальне тіло заміняють ідеальним, виділяючи лише найважливіші властивості для випадку, що розглядається. Такий підхід, що практикується багатьма науками, називається абстрагуванням. Після виділення ідеалізованого тіла з певним переліком суттєвих властивостей, будується теорія. Достовірність такої теорії залежить від того наскільки вдало прийнята ідеалізація відображає суттєві характеристики об'єкту. Оцінку цьому можна дати при порівнянні результатів досліджень, отриманих теоретично на основі ідеалізованої моделі та експериментально.

У теоретичній механіці

У теоретичній механіці ідеалізованою схемою реального твердого тіла є абсолютно тверде тіло, тобто таке, у якому при будь-яких обставинах відстані між довільними точками є сталими — не змінюються ні розміри, ні форма тіла.

У теорії пружності

У теорії пружності та її прикладному застосуванню опорі матеріалів також розглядаються моделі, котрі враховують і абсолютизують окремі властивості твердого тіла. До цих властивостей відносяться: деформівність, однорідність, суцільність, ізотропність. Прийняття умов однорідності і суцільності при малих деформаціях дозволяє застосувати методи аналізу нескінченно малих величин, що суттєво спрощує побудову теорії опору матеріалів.

Вважається також, що залежність між напруженнями і деформаціями описуються є лінійною (див. Закон Гука).

У теорії пластичності

У теорії пластичності моделі твердого тіла базуються на ідеалізації властивості деформаційного зміцнення або властивості плинності твердих тіл у напружено-деформованому стані.

У математиці

У математиці (геометрії) об'єктом розгляду є уявне тверде тіло, в якому зберігаються лише форма і розміри при повному абстрагуванні від усіх інших властивостей. На відміну від реальних предметів геометричні тіла, як і всякі геометричні фігури, є уявними об'єктами.

Докладніше: Геометричне тіло

Див. також

Література

  • І. П. Пінкевич, В. Й. Сугаков (2006). Теорія твердого тіла. Київ: Видавничо-поліграфічний центр «Київський університет».
  • А. С. Давыдов (1976). Теория твердого тела. Москва: Наука.