Гіперповерхня: відмінності між версіями

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку
[неперевірена версія][неперевірена версія]
Вилучено вміст Додано вміст
Немає опису редагування
Рядок 92: Рядок 92:
: <math>(28) \qquad \sigma^{(ps)}_{ij} = \tau^{(p)}_i \tau^{(s)}_j - \tau^{(p)}_j \tau^{(s)}_i</math>
: <math>(28) \qquad \sigma^{(ps)}_{ij} = \tau^{(p)}_i \tau^{(s)}_j - \tau^{(p)}_j \tau^{(s)}_i</math>
Ці бівектори мають одиничну площу і взаємно ортогональні:
Ці бівектори мають одиничну площу і взаємно ортогональні:
: <math>(29) \qquad |\boldsymbol{\sigma}^{(ps)}| = |\boldsymbol{\tau}^{(p)}| |\boldsymbol^{(s)}| \sin \phi = 1</math>
: <math>(29) \qquad |\boldsymbol{\sigma}^{(ps)}| = |\boldsymbol{\tau}^{(p)}| |\boldsymbol{\tau}^{(s)}| \sin \phi = 1</math>
: <math>(30) \qquad \sigma^{(ps)}_{ij} \sigma^{(kl)\, ij} = 0, \; if (ps) \ne (kl)</math>
: <math>(30) \qquad \sigma^{(ps)}_{ij} \sigma^{(kl)\, ij} = 0, \; if (ps) \ne (kl)</math>



Версія за 08:50, 7 травня 2008

Гіперповерхнею називається многовид розмірності , який є підмножиною евклідового простору на одиницю більшої розмірності .

Одиничний вектор нормалі

Нехай гіперповерхня задана параметричними рівняннями:

Будемо скрізь в цій статті вважати функції (1) достатньо гладкими (неперервні другі похідні), з невиродженим метричним тензором .

Координатні вектори в точці многовида задають афінний підпростір - дотичну до многовида гіперплощину. Ортогональним доповненням до гіперплощини є пряма , що проходить через дану точку многовида і перпендикулярна до неї. Виберемо (якийсь один із двох можливих) напрям цієї прямої і відкладемо на прямій одиничний вектор . В сусідній (близькій до точки ) точці многовида ортогональна пряма буде близькою по напрямку до прямої , тому проекція вектора на уже однозначно задає додатній напрям на прямій . Відкладемо в цьому додатньому напрямку прямої одиничний вектор . Таким чином, рухаючись від однієї точки многовида до іншої в деякій області многовида, ми матимемо векторну функцію:

Ця функція буде неперервною (оскільки гіперповерхня (1) гладка, без особливих точок). Спробуємо поширити функцію на весь многовид. Це можна зробити в тому випадку, коли рухаючись по будь-якому замкнутому контуру, що лежить в гіперповерхні, почавши з точки і обчислюючи по неперервності вектор нормалі, ми вернемося в точку з тим самим напрямком вектора нормалі. Така гіперповерхня називається двосторонньою або орієнтовною. Але бувають і такі гіперповерхні, що обійшовши деякий замкнутий контур ми повернемось в точку з протилежним вектором нормалі. Такі гіперповерхні називають односторонніми або неорієнтовними. Прикладами односторонніх гіперповерхонь є стрічка Мебіуса та пляшка Клейна.

Із ортогональності вектора нормалі до координатних векторів гіперповерхні маємо рівняння:

а одинична довжина вектора нормалі описується рівнянням:

Тензор повної кривини

Із розкладу

і того факту, що існує лише один напрям , ортогональний до векторів , слідує, що всі вектори колінеарні вектору , тобто ми можемо записати:

Числа є проекціями векторів на вектор нормалі , а тому можуть бути як додатніми так і від'ємними. Відповідно до формули (6), кривина всіх геодезичних ліній, що проходять через фіксовану точку многовиду, паралельна вектору (центри кривини лежать на прямій, що ортогональна до многовиду):

Похідні вектора нормалі

Диференціювання по координатам многовида формули (4) дає:

тобто похідні одиничного вектора нормалі ортогональні до самого вектора нормалі , а тому лежать в дотичній до многовида гіперплощині. Ми можемо розкласти вектор по базисних векторах дотичного простору:

Знайдемо коефіцієнти розкладу . Для цього помножимо ліву і праву частини формули (9) скалярно на вектор .
Для лівої частини маємо:

А для правої:

Із формул (9-11) одержуємо наступну формулу для обчислення похідних одиничного вектора нормалі через тензор повної кривини:

Відмітимо, що вектор ортогональний до координат на многовиді, а тому його коваріннтна похідна співпадає з частинною похідною (подібно до градієнта скаляра):

Головні кривини і напрямки гіперповерхні

Симетричний тензор в дотичному в точці до гіперповерхні векторному просторі задає лінійне перетворення:

і ми можемо поставити задачу на власні числа і вектори цього перетворення. Спочатку перейдемо в систему координат, яка буде прямокутною декартовою в точці (дивіться Майже декартові координати в точці многовида). Оскільки метричний тензор в цій точці одиничний (), то коваріантні і контраваріантні координати тензора будуть однакові, тому перетворення (14) здійснюється симетричною матрицею . Як відомо з теорії матриць, симетрична матриця має взаємно ортогональних власних векторів (ми можемо їх вважати також одиничними), причому всі відповідні їм власні числа є дійсними числами (що можуть бути як додатніми так і від'ємними). В обраній системі координат маємо:

Формула (15) має тензорний характер, а тому справедлива в будь-якій системі координат, так само і ортогональність власних векторів (16) можна записати в будь-якій системі координат через метричний тензор:

По формулі (7a) ми можемо знайти кривину геодезичної лінії, що проведена паралельно одному з власних векторів :

Власні числа називаються головними кривинами гіперповерхні, а відповідні їм власні вектори - головними напрямками.

В системі координат, яка в точці гіперповерхні має координатні вектори що співпадають з головними напрямками, матриця тензора повної кривини буде діагональною:

Те ж саме можна записати в тензорних позначеннях:

в цій формулі додавання по індексу не проводиться.

Запишемо спектральний розклад тензора , користуючись власними числами і векторами. В довільній системі координат маємо:

Рівняння Петерсона-Кодацці

Розглянемо дію комутатора коваріантних похідних на координатні вектори:

Цей комутатор ми можемо записати через тензор повної кривини:

Порівнюючи формули (21) і (22) знаходимо:

Рівняння (24) називається рівнянням Петерсона-Кодацці. Цю рівність можна трактувати таким чином: коваріантна похідна тензора повної кривини для гіперповерхні є симетричним тензором з трьома індексами:

Тензор внутрішньої кривини

Підставимо в формулу (23) спектральний розклад (20). Знаходимо тензор Рімана:

Введемо позначення бівектора - орієнтованої площадки , побудованої на двох векторах головних напрямків:

або те саме в компонентах:

Ці бівектори мають одиничну площу і взаємно ортогональні:

В правій частині формули (26) діагональні доданки з однаковими індексами () дорівнюють нулю, а недіагональні розбиваються на дві однакові по кількості групи: доданки з , і доданки з . Тому формулу (26) можна переписати так:

Із формули (31) і властивості бівектора легко видно, що має виконуватися алгебраїчна тотожність Біанкі.

В системі координат, що побудована на головних напрямках гіперповерхні, власні вектори мають координати: