Прямокутний трикутник: відмінності між версіями

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку
[перевірена версія][неперевірена версія]
Вилучено вміст Додано вміст
Немає опису редагування
Рядок 4: Рядок 4:
Сторони прямокутного трикутника мають власні назви. Дві сторони, що утворюють прямий кут називаються [[катет]]ами, а третя сторона — [[Гіпотенуза|гіпотенузою]]. Традиційно катети позначаються літерами ''a'' та ''b'', а гіпотенуза — літерою ''c''.
Сторони прямокутного трикутника мають власні назви. Дві сторони, що утворюють прямий кут називаються [[катет]]ами, а третя сторона — [[Гіпотенуза|гіпотенузою]]. Традиційно катети позначаються літерами ''a'' та ''b'', а гіпотенуза — літерою ''c''.
За [[Теорема Піфагора|теоремою Піфагора]] можна знайти будь-яку сторону прямокутного трикутника, якщо відомі дві інші сторони. За цією теоремою квадрат гіпотенузи дорівнює сумі квадратів катетів.
За [[Теорема Піфагора|теоремою Піфагора]] можна знайти будь-яку сторону прямокутного трикутника, якщо відомі дві інші сторони. За цією теоремою квадрат гіпотенузи дорівнює сумі квадратів катетів.
: <math> AB^2=AC^2+BC^2 </math>
: <math> AB=AC+BC </math>
Звідси можна знайти інші сторони прямокутного трикутника.
Звідси можна знайти інші сторони прямокутного трикутника.
: <math> AC^2=AB^2-BC^2 </math>
: <math> AC=AB-BC </math>
: <math> BC^2=AB^2-AC^2 </math>
: <math> BC=AB-AC </math>


Катети є водночас висотами прямокутного трикутника. Тому площа прямокутного трикутника дорівнює:
Катети є водночас висотами прямокутного трикутника. Тому площа прямокутного трикутника дорівнює:

Версія за 10:42, 18 вересня 2016

Прямокутний трикутник — трикутник, один із кутів якого прямий. Прямокутний трикутник займає особливе місце в планіметрії, оскільки для нього існують прості співвідношення між сторонами і кутами.

Сторони прямокутного трикутника мають власні назви. Дві сторони, що утворюють прямий кут називаються катетами, а третя сторона — гіпотенузою. Традиційно катети позначаються літерами a та b, а гіпотенуза — літерою c. За теоремою Піфагора можна знайти будь-яку сторону прямокутного трикутника, якщо відомі дві інші сторони. За цією теоремою квадрат гіпотенузи дорівнює сумі квадратів катетів.

Звідси можна знайти інші сторони прямокутного трикутника.

Катети є водночас висотами прямокутного трикутника. Тому площа прямокутного трикутника дорівнює:

.

Властивості прямокутних трикутників

  1. Сума гострих кутів прямокутного трикутника дорівнює 90°.
  2. Якщо у прямокутному трикутнику один з гострих кутів дорівнює 30°, то протилежний цьому куту катет буде дорівнювати половині гіпотенузи.
  3. Якщо катет прямокутного трикутника дорівнює половині гіпотенузи, то кут, що лежить проти цього катета, дорівнює 30°.
  4. Медіана, проведена до гіпотенузи прямокутного трикутника, ділить його на два рівнобедрених трикутника, оскільки медіана дорівнює половині гіпотенузи.
  5. Якщо описати коло навколо прямокутного трикутника, то гіпотенуза буде діаметром кола.

Ознаки рівності прямокутних трикутників

У прямокутного трикутника є чотири ознаки рівності:

  • За двома катетами.

Якщо катети одного прямокутного трикутника дорівнюють відповідно катетам другого трикутника, то такі трикутники рівні.

  • За катетом і гострим кутом.

Якщо катет і гострий кут одного прямокутного трикутника дорівнюють відповідно катету й гострому куту другого трикутника, то такі трикутники рівні.

  • За гіпотенузою і катетом.

Якщо гіпотенуза і катет одного прямокутного трикутника дорівнюють відповідно гіпотенузі й катету другого трикутника, то такі трикутники рівні.

  • За гіпотенузою і гострим кутом.

Якщо гіпотенуза і гострий кут одного прямокутного трикутника дорівнюють відповідно гіпотенузі й гострому куту другого трикутника, то такі трикутники рівні.

Тригонометрія у прямому трикутнику

Тригонометричні функції для гострих кутів можна визначити як відношення сторін прямокутного трикутника. Для будь-якого даного кута можна побудувати прямокутний трикутник, що містить такий кут, і зі сторонами: протилежним катетом, прилеглим катетом і гіпотенузою, пов'язаними з цим кутом певним співвідношенням. Ці відносини сторін не залежать від конкретного обраного прямокутного трикутника, а залежать тільки від заданого кута, так як всі трикутники, побудовані таким чином, є подібними.

  • Синусом гострого кута прямокутного трикутника називається відношення протилежного катета до гіпотенузи.
  • Косинусом гострого кута прямокутного трикутника називається відношення прилеглого катета до гіпотенузи.
  • Тангенсом гострого кута прямокутного трикутника називається відношення протилежного катета до прилеглого катета.
  • Котангенсом гострого кута прямокутного трикутника називається відношення прилеглого катета до протилежного катета.

Розглянемо у формальних позначених через малюнок вище.

звідси
звідси
звідси
звідси

Звідси можна зробити висновок, що:

  • Щоб знайти катет, протилежний до гострого кута прямокутного трикутника, потрібно гіпотенузу помножити на синус цього кута, або прилеглий катет помножити на тангенс цього кута.
  • Щоб знайти катет, прилеглий до гострого кута прямокутного трикутника, потрібно гіпотенузу помножити на косинус цього кута, або протилежний катет помножити на котангенс цього кута.
  • Щоб знайти гіпотенузу, потрібно катет, прилеглий до гострого кута, поділити на косинус цього кута, або катет, протилежний до гострого кута, поділити на синус цього кута.

Вписане й описане коло прямокутного трикутнику

Описане коло

Описане коло

Центром кола, описаного навколо прямокутного трикутника, є середина гіпотенузи. Нехай  — центр описаного кола навколо прямокутного ABC

Вписане коло

Вписане коло

У прямокутний трикутник ABC

з прямим кутом  вписане коло, яке дотикається до катетів у точках  і . Відрізки  і  дорівнюють радіусу кола.

Радіус вписаного кола у прямокутний трикутник з катетами і і гіпотенузою знаходиться за формулою:

Теорема про висоту прямокутного трикутника

Нехай — висота прямокутного трикутника , опущена на гіпотенузу прямого кута, і нехай вона ділить гіпотенузу на відрізки та , які є проекціями катетів та на гіпотенузу відповідно. Тоді справделиві наступні рівності:

Доведення. Трикутники , та подібні між собою (за гострим кутом як прямокутні трикутники).

З подібності трикутників та маємо, що . Звідси випливає, що та . Також звідси випливає рівність .

З подібності трикутників та маємо, що . Звідси випливає, що . Також звідси випливає рівність .

Оскільки та , то, перемноживши між собою правді та ліві частини рівностей, одержимо .

Таким чином доведено всі чотири рівності.

Джерела

  • Г. П. Бевз. Геометрія трикутника. — Київ: Генеза, 2005, ISBN 966-504-431-1
  • О. М. Роганін, О. І. Каплун. Математика. — Харків: Весна, 2009, ISBN 978-966-8896-77-4
  • М. І. Бурда, Н. А. Тарасенкова. Геометрія 7 клас. — Україна: Зодіак-ЕКО, 2007, ISBN 978-966-7090-45-6

Див. також