Спектральний аналіз: відмінності між версіями

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку
[неперевірена версія][неперевірена версія]
Вилучено вміст Додано вміст
Немає опису редагування
Немає опису редагування
Рядок 1: Рядок 1:
[[Файл:Dispersion prism.jpg|міні|праворуч|200пкс|''[[Дисперсія світла|Розкладення]] трьохгранною скляною [[призма|призм]]ою монохроматичного потоку світла на [[колір|різнокольоровий]] [[спектр]]'']]
[[Файл:Dispersion prism.jpg|міні|праворуч|200пкс|''[[Дисперсія світла|Розкладення]] тригранною скляною [[призма|призм]]ою потоку білого світла на [[колір|різнокольоровий]] [[спектр]]'']]


[[Файл:Fluorescent lighting spectrum peaks labelled.gif|міні|праворуч|200пкс|''[[Спектр]] [[світло|видимого випромінювання]] [[флуорисцентна лампа|флуорисцентної лампи]]. З піками 4 — [[тербій|тербію]] (Tb); 5 — [[ртуть|ртуті]] (Hg); 12 — [[європій|европію]] (Eu).'']]
[[Файл:Fluorescent lighting spectrum peaks labelled.gif|міні|праворуч|200пкс|''[[Спектр]] [[світло|видимого випромінювання]] [[флуорисцентна лампа|флуорисцентної лампи]]. З піками 4 — [[тербій|тербію]] (Tb); 5 — [[ртуть|ртуті]] (Hg); 12 — [[європій|европію]] (Eu).'']]

Версія за 17:52, 26 січня 2010

Розкладення тригранною скляною призмою потоку білого світла на різнокольоровий спектр
Спектр видимого випромінювання флуорисцентної лампи. З піками 4 — тербію (Tb); 5 — ртуті (Hg); 12 — европію (Eu).

Спектральний аналіз — сукупність методів визначення складу (наприклад, хімічного) об'єкта, заснований на вивченні спектрів взаємодії матерії з випромінюванням: спектри електромагнітного випромінювання, радіації, акустичних хвиль, розподілу за масою та енергією елементарних частинок та інше. Спектральний аналіз, грунтується на явищі дис­персії світла. Традиційно розмежовують:

Принцип дії

Атоми кожного хімічного елемента мають певні резонансні частоти, внаслідок чого саме на цих частотах вони випромінюють або поглинають світло. Це призводить до того, що в спектроскопі на спектрах видимі лінії (темні або світлі) в певних місцях, характерних для кожної речовини. Інтенсивність ліній залежить від кількості речовини і її стану. У кількісному спектральному аналізі визначають зміст досліджуваної речовини по відносній або абсолютній інтенсивності ліній або смуг у спектрах.

Якщо вузький пучок білого світла спрямувати на бічну грань тригранної призми, то, по-різному заломлюючись у склі, промені, з яких складається біле світло, дадуть на екрані райдужну смужку, що називається спектром. У спектрі всі кольори розміщені завжди в певному порядку. Світло поширюється у вигляді електромагнітних хвиль.

Кожному кольору відповідає певна довжина електромагнітної хвилі. Довжина хвилі світла зменшується від червоних проме­нів до фіолетових приблизно від 0,7 до 0,4 мкм. За фіолетовими променями у спектрі лежать ультрафіолетові промені, які невиди­мі для ока, але діють на фотопластинку. Ще меншу довжину хви­лі мають рентгенівські промені. За червоними променями знахо­диться область інфрачервоних променів. Вони невидимі, але сприй­маються приймачами інфрачервоного випромінювання, наприклад спеціальними фотопластинками.

Оптичний спектральний аналіз характеризується відносною простотою виконання, відсутністю складної підготовки проб до аналізу, незначною кількістю речовини (10—30 мг), необхідної для аналізу на велике число елементів. Атомарні спектри (поглинання або випуску) одержують переведенням речовини в пароподібний стан шляхом нагрівання проби до 1 000—10 000°C. Як джерела збудження атомів при емісійному аналізі електропровідних матеріалів застосовують іскру, дугу змінного струму; при цьому пробу розміщають у кратері одного з вугільних електродів. Для аналізу розчинів широко використовують полум'я або плазму різних газів.

Історія

Спектральний аналіз за оптичними спектрами атомів був запропонований у 1859 році Г. Кірхгофом та Р. Бунзеном[1]. За його допомогою гелій (He) був відкритий на Сонці раніше ніж на Землі. Але ще у 1854 році доктор Девід Альтер (англ. David Alter), науковець з міста Фріпорт, штату Пенсільванія (США) надрукував наукову працю[2], що описувала спектральні властивості 12 металів .

Застосування

Най­важливішим джерелом інформації про більшість космічних об'єктів є їхнє випроміню­вання. Дістати найбільш цінні й різноманітні відомості про тіла дає змогу спектральний аналіз їхнього випромінювання. За допо­могою цього методу можна встановити якісний і кількісний хіміч­ний склад світила, його температуру, наявність магнітного поля, швидкість руху та багато іншого.

Для одержання спектрів застосовують прилади — спектроскоп, спектрограф). У першій спектр розглядають, а у другому його фотографують. Спектрограма — фотографія спектра.


Існують такі види спектрів земних джерел і небесних тіл:

  • Суцільний, або неперервний спектр у вигляді райдужної смужки дають непрозорі розжарені тіла (вугілля, нитка електро­лампи) і досить протяжні густі маси газів.
  • Лінійчастий спектр випромінювання дають розріджені гази й пара при сильному нагріванні. Кожний газ випромінює світло строго визначених довжин хвиль і дає характерний для даного хімічного елемента лінійчастий спектр. Значні зміни стану газу або умов його світіння, наприклад нагрівання чи іонізація, спри­чиняють певні зміни в спектрі цього газу. Складено таблиці, в яких перелічуються лінії кожного газу й зазначається яскравість кожної лінії. Наприклад, у спектрі пари натрію (Na) особливо яскравими є дві жовті лінії.
  • Лінійчастий спектр поглинання дають гази й пара, якщо за ними міститься яскраве джерело, що дає неперервний спектр — це неперервний спектр, перерізаний темни­ми лініями саме в тих місцях, де мають бути яскраві лінії, власти­ві даному газові. Наприклад, дві темні лінії поглинання пари натрію (Na) містяться в жовтій частині спектра.

Вивчення спектрів дає змогу аналізувати хімічний склад га­зів, що випромінюють або поглинають світло. Кількість атомів або молекул, які випромінюють чи поглинають енергію, визначає­ться інтенсивністю ліній. Чим помітніша лінія певного елемента у спектрі випромінювання або поглинання, тим більше таких ато­мів (молекул) на шляху променя світла.

Сонце і зорі оточені газовими атмосферами. Неперервний спектр їхньої видимої поверхні перетинається темними лініями поглинання, які виникають, коли проміння проходить через атмосферу зірок. Тому їх спектри — це спектри поглинання.

Швидкості руху небесних світил відносно Землі за променями зору (променеві швидкості) визначають за допомогою спектрального аналізу на основі ефекту Доплера: якщо джерело світла і спостерігач зближаються, то довжини хвиль, що визна­чають положення спектральних ліній, укорочуються, а при їх вза­ємному віддаленні довжини хвиль збільшуються. Ця залежність виражається формулою:


де ν — променева швидкість відносно руху з урахуванням зна­ка (мінус при зближенні);

  •  — довжина хвилі при нерухомому джерелі;
  • λ — довжина хвилі під час руху джерела;
  • с — швидкість світла у вакуумі (~300 000 км/с).

Інакше кажучи, із зближенням спостерігача і джерела світла лінії спектра змішуються до його фіолетового кінця, а з від­даленням — до червоного.

Діставши спектрограму світила, над нею і під нею вдруковують спектри порівняння від земного джерела випромінювання. Спектр порівняння вважають нерухоми, і відносно нього можна визначати зміщення ліній спектра зірки. На­віть швидкості небесних тіл (десятки й сотні кілометрів за секунду) зумовлюють настільки малі зміщення (соті або десяті частки мм), що їх можна виміряти на спектрограмі тільки під мікроскопом. Щоб з'ясувати, якій зміні довжини хвилі це відповідає, треба знати масштаб спектра, тобто на скільки змінюєть­ся довжина хвилі, якщо ми просуваємося вздовж спектра на 1 мм.

За спектром можна знайти й температуру світнього об'єкту. Коли тіло розжарене до червоного коліру, у його суцільному спектрі найяскравіша червона частина. Якщо його нагрівати далі, ділянка найбільшої яскравості у спектрі змішується в жовту, потім у зе­лену частину і так далі до фіолетового. Це явище описується законом зміщення Віна, який показує залежність положення максимуму у спектрі випро­мінювання від температури тіла. Знаючи цю залежність, можна встановити температуру Сонця, зірок, планет за допомогою спеціально створе­них приймачів інфрачервоного випромінювання.

Обсерваторії

Астрономічні дослідження проводять у нау­кових інститутах, університетах і обсерваторіях. Пулківська обсерваторія під Санкт-Петербургом існує з 1839 року і просла­вилася складанням найточніших зоряних каталогів. У процесі бурхли­вого розвитку науки в СРСР було побудовано багато ін­ших обсерваторій: Спеціальна астрофізична обсерваторія www на Північному Кавказі, Кримська www (поблизу Сімферополя), Бюраканська www (поблизу Єревана), Абастуманська www (поблизу Боржомі), Голосіївська wwwwКиєві), Шемахінська www (поблизу Баку) обсерваторії, Харківська, Миколаївська www та Сімеїзька обсерваторії як філіали Пулківської. Найбільшими інститутом був Астрономічний інститут імені П. К. Штернберга при МДУ та Інститут теоретичної астрономії Академії наук Російської Федерації у Санкт-Петербурзі.

Обсерваторії звичайно спеціалізуються на проведенні певних видів астрономічних досліджень. Тому вони оснащені різними ти­пами телескопів та інших приладів, призначених, наприклад, для визначення точного положення зір на небі, вивчення Сонця або розв'язання інших наукових завдань.

Часто для вивчення небесних об'єктів їх фотографують за допомогою спеціальних телескопів. Положення зір на одержаних негативах вимірюють відповідними приладами в лабораторії. Негативи, що зберігаються в обсерваторії, утворюють «скляну фото­теку». Досліджуючи астрономічні фотографії, можна виміряти величину потоків випромінювання від зір, планет та ін­ших космічних об'єктів. Для високоточних вимірювань енергії світлових потоків використовують фотоелектричні фотометри. У них світло від зорі, зібране об'єктивом телескопа, спрямовуєть­ся на світлочутливий шар електронного вакуумного приладу — фотопомножувача, в якому виникає слабкий струм, що його підсилюють та реєструють спеціальні електронні прилади. Про­пускаючи світло через спеціально дібрані кольорові світлофільтри, астрономи кількісно із великою точністю оцінюють колір об'єкта. А за допомогою спектрографів визначають хімічний склад космічних об'єктів.

Позаатмосферна астрономія

Дослідження за допомогою космічної техніки займають особливе місце серед методів вивчення небесних тіл і космічного середовища. Початок було покла­дено запуском у СРСР у 1957 році першого в світі штучного супут­ника Землі. Космічні апарати дали змогу здійснювати дослідження в усіх діапазонах довжин хвиль електромагнітного випроміню­вання. Тому сучасну астрономію часто називають всехвильовою. Позаатмосферні спостереження дають змогу приймати в космосі випромінювання, які поглинає або дуже змінює земна атмосфера: далекі ультрафіолетові, рентгенівські й інфрачервоні промені, радіовипромінювання деяких довжин хвиль, що не доходять до Землі, а також корпускулярні випромінювання Сонця та інших тіл. Дослідження цих, раніше недоступних видів випромінювання зір і туманностей, міжпланетного та міжзоряного середовища дуже збагатили наші знання про фізичні процеси у Всесвіті. Зокрема, було відкрито невідомі раніше джерела рентгенівського випромінювання — рентгенівські пульсари.

Багато інформації про природу найвіддаленіших від нас тіл та їх систем також здобуто завдяки дослідженням, виконаним за допомогою встановлених спектрографів на різних космічних апаратах.

Примітки

  1. Kirchhoff, G. R.; Bunsen, R. Ann. Phys. (1860): pages 110, 160. (англ.)
  2. Alter, David. On Certain Physical Properties of Light Produced by the Combustion of Different Metals in an Electric Spark Refracted by a Prism. Am. J. Sci. Arts 18 (1854): pages 55-57. (англ.)

Література

  1. Alter, David. On Certain Physical Properties of Light Produced by the Combustion of Different Metals in an Electric Spark Refracted by a Prism. Am. J. Sci. Arts 18 (1854). (англ.)
  2. Alter, David. On Certain Physical Properties of the Light of the Electric Spark, Within Certain Gases, as Seen Through a Prism. Am. J. Sci. Arts 19 (1855): pages 213-214. (англ.)
  3. Brace, D. B. (Ed. and translator). The Laws of Radiation and Absorption: Memoirs by Prévost, Stewart, Kirchhoff, and Kirchhoff and Bunsen. New York, NY: American Book Company, 1901, pages 100-125. (англ.)
  4. Johnson, Allen, ed.; Garraty, John and James, Edward, Eds. Dictionary of American Biography; Supplement Four. New York, NY: Charles Scribner’s Sons, 1974, page 230. (англ.)
  5. Retcofsky, H. L. Spectrum Analysis Discoverer, Spectroscopy Society of Pittsburgh, PA 80 (2003): 1003. (англ.)

Див. також

Посилання