Хронологія квантових обчислень

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку

Ця стаття — хронологія квантових обчислень.

1970-ті[ред. | ред. код]

1970[ред. | ред. код]

1973[ред. | ред. код]

1975[ред. | ред. код]

  • У роботі Романа Поплавського показується, що внаслідок принципу суперпозиції неможливо моделювати квантові системи на класичному комп'ютері[4].

1976[ред. | ред. код]

  • Польський математик і фізик Роман Станіслав Інґарден публікує важливу роботу, яка є однією з перших спроб побудувати квантову теорію інформації[5]. У цій роботі показано, що хоча теорію інформації Шеннона неможливо безпосередньо узагальнити на квантовий випадок, можна побудувати квантову теорію інформації на основі формалізму квантової механіки відкритих систем і узагальненої концепції спостережуваних (т.з. напівспостережувані, semi-observables). Така квантова теорія інформації буде узагальненням теорії Шеннона.

1980-ті[ред. | ред. код]

1980[ред. | ред. код]

1981[ред. | ред. код]

  • Річард Фейнман у своїй промові на Першій конференції з фізики обчислень, що відбулася в травні в МТІ, зазначає, що неможливо ефективно моделювати еволюцію квантової системи на класичному комп'ютері. Він пропонує просту модель квантового комп'ютера, який буде спроможний виконувати таке моделювання[9][10].

1982[ред. | ред. код]

1984[ред. | ред. код]

1985[ред. | ред. код]

1990-ті[ред. | ред. код]

1991[ред. | ред. код]

1993[ред. | ред. код]

1994[ред. | ред. код]

1995[ред. | ред. код]

1996[ред. | ред. код]

1997[ред. | ред. код]

1998[ред. | ред. код]

1999[ред. | ред. код]

  • Вперше демонструються трикубітний квантовий комп'ютер і експериментальна реалізація на ньому алгоритму Грувера[32].
  • Семюел Браунштейн із співробітниками показують відсутність переплутаності змішаних станів у будь-яких експериментах із об'ємним ЯМР. Наявність переплутаності чистих станів — необхідна умова для квантового прискорювання обчислень, тому це давало привід вважати ЯМР-комп'ютер у кращому випадку класичним симулятором квантового комп'ютера. Але доти питання про необхідність переплутаності змішаних станів для прискорювання обчислень залишалося відкритим[33].

2000-ні[ред. | ред. код]

2000[ред. | ред. код]

2001[ред. | ред. код]

  • У Дослідницькому центрі IBM Альмаден і Стенфордському університеті вперше реалізується алгоритм Шора[37]. Вдалося факторизувати число 15 (розкладено на множники 5 • 3) за допомогою 1018 однакових молекул, кожна з яких містила сім активних ядерних спінів.
  • Ной Лінден і Санду Попеску показують, що для роботи великої частини квантових протоколів необхідна квантова переплутаність[38]. Цей результат (разом із роботою Браунштейна 1999 року[33]) поставив під сумнів обґрунтованість квантових обчислень на ЯМР-комп'ютерах.
  • Емануель Нілл, Реймонд Лафламм і Жерар Мілберн доводять можливість оптичних квантових обчислень із використанням джерел поодиноких фотонів, лінійних оптичних елементів і детекторів поодиноких фотонів (протокол KLM), відкривши тим самим нову область для експериментального втілення квантових обчислень[39].

2002[ред. | ред. код]

2003[ред. | ред. код]

2004[ред. | ред. код]

2005[ред. | ред. код]

2006[ред. | ред. код]

  • Джон Мортон і Саймон Бенджамін із факультету матеріалознавства Оксфордського університету продемонстрували «скорострільний» метод квантової корекції помилок (bang-bang method) на замкненому у С60-фулерені кубіті: кубіт неодноразово обстрілюється мікрохвильовим імпульсом, що повністю змінює характер взаємодії кубіта із середовищем, але дозволяє зберегти стан кубіта[52].
  • Дослідники з Іллінойського університету в Урбана-Шампейн використовують квантовий ефект Зенона, здійснюючи повторювані вимірювання властивостей фотона для поступової їх зміни, що фактично не дозволяє фотонові виконувати потрібний алгоритм, для пошуку у базі даних без власне «запуску» квантового комп'ютера[53].
  • Влатко Вєдрал із університету Лідса разом із колегами з університету Порту та Віденського університету виявили, що фотони у звичайному лазері можна заплутати за допомоги вібрацій макроскопічного дзеркала (незалежно від температури дзеркала)[54].
  • Семюел Браунштейн із Йоркського університету разом із дослідниками з Токійського університету та Агенції з науки та технологій Японії вперше провів експериментальну демонстрацію квантового телеклонування[55].
  • Співробітники Шеффілдського університету розробили метод високоефективного генерування та керування окремими фотонами за кімнатної температури[56].
  • Група Джона Мартініса з Каліфорнійського університету розробила новий метод квантової корекції помилок для комп'ютера на джозефсонівських контактах[57].
  • Реймонд Лафламм із колегами з університету Ватерлоо, МТІ та Інституту теоретичної фізики Периметр протестували перший 12-кубітний квантовий комп'ютер[58].
  • Девід Вайнленд із співробітниками розробили двовимірну йонну пастку[59].
  • Важливий крок до створення квантових вентилів: групі співробітників Боннського університету під керуванням Арно Раушенбойтеля та Дітера Мешеда вперше вдалося вишикувати сім атомів у стійку пряму лінію за допомоги лазерного пінцета[60].
  • Група Лівена Вандерсайпена з Делфтського технологічного університету (Нідерланди) сконструювала прилад для керування електронними станами «спін вниз» та «спін вгору» у квантових точках[61].
  • Групою Чжиміна Вана та Ґреґорі Саламо з Арканзаського університету створено молекули з квантових точок[62].
  • Дімітрій Кульчер, Роланд Уінклер та Крістіан Лехнер розробляють нову теорію, яка демонструє можливість контролювання спіну частинки без використання надпровідних магнітів, що стає важливим кроком у розвитку спінтроніки та побудові квантового комп'ютера[63].
  • Група Юджина Ползіка з Копенгагенського університету реалізовує квантову телепортацію між фотонами та атомами[64].
  • Сет Ллойд разом із колегами з університету Камерино розвивають теорію заплутаності макроскопічних об'єктів, яка дає можливість використання «ретрансляторів» (quantum repeaters) у квантовому комп'ютері[65].
  • Тай-Чан Чіан із Іллінойського університету в Урбана-Шампейн показує існування квантової когеренції в несумірних електронних системах[66].
  • Група Крістофа Боема з університету Юти демонструє для фосфор-кремнієвого квантового комп'ютера можливість зчитування даних, що закодовані в ядерних спінах[67].

2007[ред. | ред. код]

2010-ті[ред. | ред. код]

2016[ред. | ред. код]

  • У травні 2016 року IBM запустила IBM Quantum Experience,[93] з п’ятикубітовим квантовим процесором.

2017[ред. | ред. код]

  • У березні 2017 року IBM випустила програмне забезпечення Qiskit[94] щоб допомогти користувачам легше писати код та запускати експерименти на квантовому процесорі та симуляторі.
  • Після тривалого процесу налагодження та випробувань у вересні-жовтні 2017 року була проведена відео-конференція із передачею інформації через сплутані квантові стани фотонів між Академією наук Китаю та Академією наук Австрії через дослідницький супутник Micius[95].

2019[ред. | ред. код]

  • У січні 2019 IBM запустила перший комерційний квантовий комп'ютер IBM Q System One.[96]

2020-ті[ред. | ред. код]

2020[ред. | ред. код]

Примітки[ред. | ред. код]

  1. Wiesner S. Conjugate Coding // ACM Sigact News. — 1983. — Т. 15, вип. 1. — С. 78-88.
  2. Холево А. С. Некоторые оценки для количества информации, передаваемого квантовым каналом связи // Проблемы передачи информации. — 1973. — Т. 9, вип. 3. — С. 3-11. Архівовано з джерела 11 березня 2016. Процитовано 1 травня 2013.
  3. Bennett C. H. Logical Reversibility of Computation // IBM J. Res. Develop. — 1973. — Т. 17. — С. 525-532. Архівовано з джерела 12 березня 2014. Процитовано 8 травня 2013. (рос. переклад: Беннетт Ч. Логическая обратимость вычислений // Квантовый компьютер и квантовые вычисления (том 2). — Ижевск : РХД, 1999. — 288 с.)
  4. Поплавский Р. П. Термодинамические модели информационных процессов // УФН. — 1975. — Т. 115, вип. 3. — С. 465-501. Архівовано з джерела 14 вересня 2013. Процитовано 8 лютого 2013.
  5. Ingarden R. S. Quantum Information Theory // Reports on Mathematical Physics. — 1976. — Т. 10. — С. 43-72.
  6. Манин Ю. И. Вычислимое и невычислимое. — М. : Советское радио, 1980. — С. 15.
  7. Toffoli T.[en]. Reversible Computing // Tech. Memo MIT/LCS/TM-151, MIT Lab. for Comp. Sci. — 1980. Архівовано з джерела 4 січня 2015. Процитовано 3 травня 2013.
  8. de Bakker J., van Leeuwen J. Automata, Languages and Programming. Seventh Colloquium Noordwijkerhout, the Netherlands July 14–18, 1980. — Springer, 1980.
  9. Feynman R. Simulating physics with computers // International Journal of Theoretical Physics. — 1982. — Т. 21, вип. 6-7. — С. 467-488. (рос. переклад: Фейнман Р. Моделирование физики на компьютерах // Квантовый компьютер и квантовые вычисления (том 2). — Ижевск : РХД, 1999. — 288 с.)
  10. Feynman R. Quantum mechanical computers // Foundations of Physics. — 1986. — Т. 16, вип. 6. — С. 507-531. (рос. переклад: Фейнман Р. Квантовомеханические компьютеры // Квантовый компьютер и квантовые вычисления (том 2). — Ижевск : РХД, 1999. — 288 с.)
  11. Benioff P. Quantum mechanical hamiltonian models of turing machines // Journal of Statistical Physics. — 1982. — Т. 29, вип. 3. — С. 515-546. (рос. переклад: Бенёв П. Квантовомеханические гамильтоновы модели машин Тьюринга // Квантовый компьютер и квантовые вычисления (том 2). — Ижевск : РХД, 1999. — 288 с.)
  12. Wootters W. K., Zurek W. H. A single quantum cannot be cloned // Nature. — 1982. — Т. 299. — С. 802-803.
  13. Dieks D. Communication by EPR devices // Physics Letters A. — 1982. — Т. 92, вип. 6. — С. 271-272.
  14. Bennett C. H., Brassard G. Quantum Cryptography: Public Key Distribution and Coin Tossing // Proceedings of the International Conference on Computers, Systems and Signal Processing (Bangalore, India, December 1984). — С. 175-179. Архівовано з джерела 21 жовтня 2012. Процитовано 14 квітня 2013.
  15. Deutsch D. Quantum Theory, the Church-Turing Principle and the Universal Quantum Computer // Proc. R. Soc. Lond A. — 1985. — Т. 400. — С. 97-117. (рос. переклад: Дойч Д. Квантовая теория, принцип Чёрча-Тьюринга и универсальный квантовый компьютер // Квантовый компьютер и квантовые вычисления (том 2). — Ижевск : РХД, 1999. — 288 с.)
  16. Ekert A. Quantum Cryptography Based on Bell's Theorem // Phys. Rev. Lett. — 1991. — Т. 67, вип. 6. — С. 661-663.
  17. Simon D. R. On the power of quantum computation // Foundations of Computer Science, 1994 Proceedings., 35th Annual Symposium. — С. 116-123. Архівовано з джерела 8 січня 2017. Процитовано 1 травня 2013.
  18. Shor P. Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer // SIAM J. Comput. — 1997. — Т. 26, вип. 5. — С. 1484-1509. (рос. переклад: Шор П. Полиномиальные по времени алгоритмы разложения числа на простые множители и нахождения дискретного логарифма для квантового компьютера // Квантовый компьютер и квантовые вычисления (том 2). — Ижевск : РХД, 1999. — 288 с.)
  19. Cirac J. I., Zoller P. Quantum Computations with Cold Trapped Ions // Phys. Rev. Lett. — 1995. — Т. 74, вип. 20. — С. 4091-4094.
  20. Calderbank A. R., Shor P. Good quantum error correcting codes exist // Phys. Rev. A. — 1996. — Т. 54, вип. 2. — С. 1098-1105.
  21. Steane A. Error Correcting Codes in Quantum Theory // Phys. Rev. Lett. — 1996. — Т. 77, вип. 5. — С. 793-797.
  22. Стин Э. Квантовые вычисления. — Ижевск : РХД, 2000. — 112 с.
  23. Monroe C., Meekhof D. M., King B. E., Itano W. M., Wineland D. J. Demonstration of a Fundamental Quantum Logic Gate // Phys. Rev. Lett. — 1995. — Т. 75, вип. 25. — С. 4714-4717. Архівовано з джерела 15 жовтня 2019. Процитовано 1 травня 2013.
  24. Grover L. K. A fast quantum mechanical algorithm for database search // STOC '96 Proceedings of the twenty-eighth annual ACM symposium on Theory of computing. — С. 212-219.
  25. DiVincenzo D. P. Topics in Quantum Computers // arXiv:cond-mat/9612126. — 1996.
  26. Cory D., Fahmy A., Havel T. Ensemble quantum computing by NMR spectroscopy // PNAS. — 1997. — Т. 94, вип. 5. — С. 1634-1639.
  27. Gershenfeld N., Chuang I. Bulk Spin-Resonance Quantum Computation // Science. — 1997. — Т. 275, вип. 5298. — С. 350-356.
  28. Kitaev A. Yu. Fault-tolerant quantum computation by anyons // arXiv:quant-ph/9707021v1. — 1997.
  29. Loss D., DiVincenzo D. Quantum computation with quantum dots // Phys. Rev. A. — 1998. — Т. 57, вип. 1. — С. 120-126.
  30. Jones J. A., Mosca M. Implementation of a quantum algorithm on a nuclear magnetic resonance quantum computer // J. Chem. Phys. — 1998. — Т. 109, вип. 5. — С. 1648-1653. (arXiv: quant-ph/9801027 [Архівовано 31 березня 2017 у Wayback Machine.])
  31. Chuang I. L., Vandersypen L. M. K., Zhou X., Leung D. W., Lloyd S. Experimental realization of a quantum algorithm // Nature. — 1998. — Т. 393. — С. 143-146. (arXiv: quant-ph/9801037 [Архівовано 5 серпня 2017 у Wayback Machine.])
  32. Vandersypen L. M. K., Steffen M., Sherwood M. H., Yannoni C. S., Breyta G., Chuang I. L. Implementation of a three-quantum-bit search algorithm // Applied Physics Letters. — 2000. — Т. 76, вип. 5. — С. 646-648. (arXiv: quant-ph/9910075 [Архівовано 6 серпня 2017 у Wayback Machine.])
  33. а б Braunstein S. L., Caves C. M., Jozsa R., Linden N., Popescu S., Schack R. Separability of Very Noisy Mixed States and Implications for NMR Quantum Computing // Phys. Rev. Lett. — 1999. — Т. 83, вип. 5. — С. 1054-1057.
  34. Marx R., Fahmy A. F., Myers J. M., Bermel W., Glaser S. J. Approaching Five-Bit NMR Quantum Computing // Phys. Rev. A. — 2000. — Т. 62, вип. 1. — С. 012310. (arXiv: quant-ph/9905087 [Архівовано 2 лютого 2022 у Wayback Machine.])
  35. Vandersypen L. M. K., Steffen M., Breyta G., Yannoni C. S., Cleve R., Chuang I. L. Experimental Realization of an Order-Finding Algorithm with an NMR Quantum Computer // Phys. Rev. Lett. — 2000. — Т. 85, вип. 25. — С. 5452-5455. (arXiv: quant-ph/0007017 [Архівовано 5 серпня 2017 у Wayback Machine.])
  36. Knill E., Laflamme R., Martinez R., Tseng C.-H. An algorithmic benchmark for quantum information processing // Nature. — 2000. — Т. 404. — С. 368-370.
  37. Vandersypen L. M. K., Steffen M., Breyta G., Yannoni C. S., Sherwood M. H., Chuang I. L. Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance // Nature. — 2001. — Т. 414. — С. 883-887. (arXiv: quant-ph/0112176 [Архівовано 10 травня 2017 у Wayback Machine.])
  38. Linden N., Popescu S. Good Dynamics versus Bad Kinematics: Is Entanglement Needed for Quantum Computation? // Phys. Rev. Lett. — 2001. — Т. 87, вип. 4. — С. 047901. (arXiv: quant-ph/9906008 [Архівовано 7 березня 2021 у Wayback Machine.])
  39. Knill E., Laflamme R., Milburn G. J. A scheme for efficient quantum computation with linear optics // Nature. — 2001. — Т. 409. — С. 46-52. Архівовано з джерела 10 серпня 2013. Процитовано 6 травня 2013.
  40. Pittman T. B., Fitch M. J., Jacobs B. C., Franson J. D. Experimental controlled-not logic gate for single photons in the coincidence basis // Phys. Rev. A. — 2003. — Т. 68, вип. 3. — С. 032316.
  41. O'Brien J. L., Pryde G. J., White A. G., Ralph T. C., Branning D. Demonstration of an all-optical quantum controlled-NOT gate // Nature. — 2003. — Т. 426. — С. 264-267.
  42. Elliot C. The DARPA Quantum Network // arXiv:quant-ph/0412029. — 2004.
  43. Anwar M. S., Jones J. A., Blazina D., Duckett S. B., Carteret H. A. Implementation of NMR quantum computation with parahydrogen-derived high-purity quantum states // Phys. Rev. A. — 2004. — Т. 70, вип. 3. — С. 032324.
  44. Anwar M. S., Blazina D., Carteret H. A., Duckett S. B., Halstead T. K., Jones J. A., Kozak C. M., Taylor R. J. K. Preparing High Purity Initial States for Nuclear Magnetic Resonance Quantum Computing // Phys. Rev. Lett. — 2004. — Т. 93, вип. 4. — С. 040501.
  45. Barreiro J. T., Langford N. K., Peters N. A., Kwiat P. G. Generation of Hyperentangled Photon Pairs // Phys. Rev. Lett. — 2005. — Т. 95, вип. 26. — С. 260501.
  46. Dumé B. Breakthrough for quantum measurement [Архівовано 8 червня 2013 у Wayback Machine.] // Physicsworld.com
  47. Sillanpää M. A., Lehtinen T., Paila A., Makhlin Yu., Roschier L., Hakonen P. J. Direct Observation of Josephson Capacitance // Phys. Rev. Lett. — 2005. — Т. 95, вип. 20. — С. 206806.
  48. Duty T., Johansson G., Bladh K., Gunnarsson D., Wilson C., Delsing P. Observation of Quantum Capacitance in the Cooper-Pair Transistor // Phys. Rev. Lett. — 2005. — Т. 95, вип. 20. — С. 206807.
  49. Häffner H., Hänsel W., Roos C. F., Benhelm J., Chek-al-kar D., Chwalla M., Körber T., Rapol U. D., Riebe M., Schmidt P. O., Becher C., Gühne O., Dür W., Blatt R. Scalable multiparticle entanglement of trapped ions // Nature. — 2005. — Т. 438. — С. 643-646.
  50. Eisaman M. D., André A., Massou F., Fleischhauer M., Zibrov A. S., Lukin M. D. Electromagnetically induced transparency with tunable single-photon pulses // Nature. — 2005. — Т. 438. — С. 837-841.
  51. Chanelière T., Matsukevich D. N., Jenkins S. D., Lan S.-Y., Kennedy T. A. B., Kuzmich A. Storage and retrieval of single photons transmitted between remote quantum memories // Nature. — 2005. — Т. 438. — С. 833-836. (arXiv: quant-ph/0511014)
  52. Morton J. J. L., Tyryshkin A. M., Ardavan A., Benjamin S. C., Porfyrakis K., Lyon S. A., Briggs G. A. D. Bang–bang control of fullerene qubits using ultrafast phase gates // Nature Physics. — 2006. — Т. 2. — С. 40-43.
  53. Dowling J. P. Quantum information: To compute or not to compute? // Nature. — 2006. — Т. 439. — С. 919-920.
  54. Ferreira A., Guerreiro A., Vedral V. Macroscopic Thermal Entanglement Due to Radiation Pressure // Phys. Rev. Letters. — 2006. — Т. 96. — С. 060407. (arXiv: quant-ph/0504186[недоступне посилання з липня 2019])
  55. Koike S., Takahashi H., Yonezawa H., Takei N., Braunstein S. L., Aoki T., Furusawa A. Demonstration of quantum telecloning of optical coherent states // Phys. Rev. Letters. — 2006. — Т. 96. — С. 060504.
  56. Adawi A. M., Cadby A., Connolly L. G., Hung W.-C., Dean R., Tahraoui A., Fox A. M., Cullis A. G., Sanvitto D., Skolnick M. S., Lidzey D. G. Spontaneous Emission Control in Micropillar Cavities Containing a Fluorescent Molecular Dye // Advanced Materials. — 2006. — Т. 18, вип. 6. — С. 727-747.
  57. Katz N., Ansmann M., Bialczak R. C., Lucero E., McDermott R., Neeley M., Steffen M., Weig E. M., Cleland A. N., Martinis J. M., Korotkov A. N. Coherent State Evolution in a Superconducting Qubit from Partial-Collapse Measurement // Science. — 2006. — Т. 312, вип. 5779. — С. 1498-1500.
  58. Negrevergne C., Mahesh T. S., Ryan C. A., Ditty M., Cyr-Racine F., Power W., Boulant N, Havel T., Cory D. G., Laflamme R. Benchmarking Quantum Control Methods on a 12-Qubit System // Phys. Rev. Letters. — 2006. — Т. 96. — С. 170501. (arXiv: quant-ph/0603248 [Архівовано 4 червня 2016 у Wayback Machine.])
  59. Seidelin S., Chiaverini J., Reichle R., Bollinger J. J., Leibfried D., Britton J., Wesenberg J. H., Blakestad R. B., Epstein R. J., Hume D. B., Itano W. M., Jost J. D., Langer C., Ozeri R., Shiga N., Wineland D. J. Microfabricated Surface-Electrode Ion Trap for Scalable Quantum Information Processing // Phys. Rev. Letters. — 2006. — Т. 96. — С. 253003. (arXiv: quant-ph/0601173 [Архівовано 16 січня 2017 у Wayback Machine.])
  60. Miroshnychenko Y., Alt W., Dotsenko I., Förster L., Khudaverdyan M., Meschede D., Schrader D., Rauschenbeutel A. An atom-sorting machine // Nature. — 2006. — Т. 442. — С. 151-154.
  61. Koppens F. H. L., Buizert C., Tielrooij K. J., Vink I. T., Nowack K. C., Meunier T., Kouwenhoven L. P., Vandersypen L. M. K. Driven coherent oscillations of a single electron spin in a quantum dot // Nature. — 2006. — Т. 442. — С. 766-771.
  62. Wang Z. M., Holmes K., Mazur Y. I., Ramsey K. A., Salamo G. J. Self-organization of quantum-dot pairs by high-temperature droplet epitaxy // Nanoscale Research Letters. — 2006. — Т. 1. — С. 57-61.
  63. Culcer D., Lechner C., Winkler R. Spin Precession and Alternating Spin Polarization in Spin-3/2 Hole Systems // Phys. Rev. Letters. — 2006. — Т. 97. — С. 106601. (arXiv: cond-mat/0603025)
  64. Sherson J. F., Krauter H., Olsson R. K., Julsgaard B., Hammerer K., Cirac I., Polzik E. S. Quantum teleportation between light and matter // Nature. — 2006. — Т. 443. — С. 557-560.
  65. Pirandola S., Vitali D., Tombesi P., Lloyd S. Macroscopic Entanglement by Entanglement Swapping // Phys. Rev. Letters. — 2006. — Т. 97. — С. 150403. (arXiv: quant-ph/0509119‎[недоступне посилання з липня 2019])
  66. Speer N. J., Tang S.-J., Miller T., Chiang T.-C. Coherent Electronic Fringe Structure in Incommensurate Silver-Silicon Quantum Wells // Science. — 2006. — Т. 314, вип. 5800. — С. 804-806.
  67. Stegner A. R., Boehme C., Huebl H., Stutzmann M., Lips K., Brandt M. S. Electrical detection of coherent 31P spin quantum states // Nature Physics. — 2006. — Т. 2. — С. 835-838. (arXiv: quant-ph/0607178)
  68. Rybczynski J., Kempa K., Herczynski A., Wang Y., Naughton M. J., Ren Z. F., Huang Z. P., Cai D., Giersig M. Subwavelength waveguide for visible light // Applied Physics Letters. — 2007. — Т. 90. — С. 021104. Архівовано з джерела 13 лютого 2015. Процитовано 13 лютого 2015.
  69. Ward M. B., Farrow T., See P., Yuan Z. L., Karimov O. Z., Bennett A. J., Shields A. J., Atkinson P., Cooper K., Ritchie D. A. Electrically driven telecommunication wavelength single-photon source // Applied Physics Letters. — 2007. — Т. 90. — С. 063512.
  70. Lu C.-Y., Zhou X.-Q., Gühne O., Gao W.-B., Zhang J., Yuan Z.-S., Goebel A., Yang T., Pan J.-W. Experimental entanglement of six photons in graph states // Nature Physics. — 2007. — Т. 3. — С. 91-95. (arXiv: quant-ph/0609130 [Архівовано 12 вересня 2016 у Wayback Machine.])
  71. Hijlkema M., Weber B., Specht H. P., Webster S. C., Kuhn A., Rempe G. A single-photon server with just one atom // Nature Physics. — 2007. — Т. 3. — С. 253-255. (arXiv: quant-ph/0702034 [Архівовано 14 березня 2022 у Wayback Machine.])
  72. Tame M. S., Prevedel R., Paternostro M., Böhi P., Kim M. S., Zeilinger A. Experimental Realization of Deutsch's Algorithm in a One-Way Quantum Computer // Phys. Rev. Letters. — 2007. — Т. 98. — С. 140501. (arXiv: quant-ph/0611186 [Архівовано 5 серпня 2017 у Wayback Machine.])
  73. Blumenthal M. D., Kaestner B., Li L., Giblin S., Janssen T. J. B. M., Pepper M., Anderson D., Jones G., Ritchie D. A. Gigahertz quantized charge pumping // Nature Physics. — 2007. — Т. 3. — С. 343-347.
  74. Gurudev Dutt M. V., Childress L., Jiang L., Togan E., Maze J., Jelezko F., Zibrov A. S., Hemmer P. R., Lukin M. D. Quantum Register Based on Individual Electronic and Nuclear Spin Qubits in Diamond // Science. — 2007. — Т. 316. — С. 1312-1316.
  75. Plantenberg J. H., de Groot P. C., Harmans C. J. P. M., Mooij J. E. Demonstration of controlled-NOT quantum gates on a pair of superconducting quantum bits // Nature. — 2007. — Т. 447. — С. 836-839. Архівовано з джерела 10 лютого 2015. Процитовано 10 лютого 2015.
  76. Nelson K. D., Li X., Weiss D. S. Imaging single atoms in a three-dimensional array // Nature Physics. — 2007. — Т. 3. — С. 556-560.
  77. Morley G. W., van Tol J., Ardavan A., Porfyrakis K., Zhang J., Briggs G. A. D. Efficient Dynamic Nuclear Polarization at High Magnetic Fields // Phys. Rev. Letters. — 2007. — Т. 98. — С. 220501. (arXiv: quant-ph/0611276)
  78. Fasth C., Fuhrer A., Samuelson L., Golovach V. N., Loss D. Direct Measurement of the Spin-Orbit Interaction in a Two-Electron InAs Nanowire Quantum Dot // Phys. Rev. Letters. — 2007. — Т. 98. — С. 266801. (arXiv: cond-mat/0701161 [Архівовано 21 вересня 2020 у Wayback Machine.])
  79. Giovannetti V., Lloyd S., Maccone L. Quantum Random Access Memory // Phys. Rev. Letters. — 2007. — Т. 100. — С. 160501. (arXiv: 0708.1879 [Архівовано 5 лютого 2018 у Wayback Machine.])
  80. Chang D. E., Sørensen A. S., Demler E. A., Lukin M. D. A single-photon transistor using nanoscale surface plasmons // Nature Physics. — 2007. — Т. 3. — С. 807-812. Архівовано з джерела 4 березня 2016. Процитовано 6 грудня 2014.
  81. Moehring D. L., Maunz P., Olmschenk S., Younge K. C., Matsukevich D. N., Duan L.-M., Monroe C. Entanglement of single-atom quantum bits at a distance // Nature. — 2007. — Т. 449. — С. 68-71.
  82. Lanyon B. P., Weinhold T. J., Langford N. K., Barbieri M., James D. F. V., Gilchrist A., White A. G. Experimental Demonstration of a Compiled Version of Shor's Algorithm with Quantum Entanglement // Phys. Rev. Letters. — 2007. — Т. 99. — С. 250505. (arXiv: 0705.1398 [Архівовано 15 січня 2016 у Wayback Machine.])
  83. Lu C.-Y., Browne D. E., Yang T., Pan J.-W. Demonstration of a Compiled Version of Shor's Quantum Factoring Algorithm Using Photonic Qubits // Phys. Rev. Letters. — 2007. — Т. 99. — С. 250504. (arXiv: 0705.1684 [Архівовано 2 липня 2017 у Wayback Machine.])
  84. Majer J., Chow J. M., Gambetta J. M., Koch J., Johnson B. R., Schreier J. A., Frunzio L., Schuster D. I., Houck A. A., Wallraff A., Blais A., Devoret M. H., Girvin S. M., Schoelkopf R. J. Coupling superconducting qubits via a cavity bus // Nature. — 2007. — Т. 449. — С. 443-447.
  85. Sillanpää M. A., Park J. I., Simmonds R. W. Coherent quantum state storage and transfer between two phase qubits via a resonant cavity // Nature. — 2007. — Т. 449. — С. 438-442.
  86. Nellutla S., Choi K.-Y., Pati M., van Tol J., Chiorescu I., Dalal N. S. Coherent Manipulation of Electron Spins up to Ambient Temperatures in Cr5+(S=1/2) Doped K3NbO8 // Phys. Rev. Letters. — 2007. — Т. 99. — С. 137601. (arXiv: 0710.5199)
  87. Young R. J., Dewhurst S. J., Stevenson R. M., Atkinson P., Bennett A. J., Ward M. B., Cooper K., Ritchie D. A., Shields A. J. Single electron-spin memory with a semiconductor quantum dot // Applied Physics Letters. — 2007. — Т. 9. — С. 365-371.
  88. Brennecke F., Donner T., Ritter S., Bourdel T., Köhl M., Esslinger T. Cavity QED with a Bose–Einstein condensate // Nature. — 2007. — Т. 450. — С. 268-271.
  89. Colombe Y., Steinmetz T., Dubois G., Linke F., Hunger D., Reichel J. Strong atom–field coupling for Bose–Einstein condensates in an optical cavity on a chip // Nature. — 2007. — Т. 450. — С. 272-276.
  90. World's First 28 qubit Quantum Computer Demonstrated Online at Supercomputing 2007 Conference. Архів оригіналу за 30 серпня 2018. Процитовано 13 лютого 2015.
  91. Kleinert J., Haimberger C., Zabawa P. J., Bigelow N. P. Trapping of Ultracold Polar Molecules with a Thin-Wire Electrostatic Trap // Phys. Rev. Letters. — 2007. — Т. 99. — С. 143002. (arXiv: 0707.2015)
  92. Trauzettel B., Bulaev D. V., Loss D., Burkard G. Spin qubits in graphene quantum dots // Nature Physics. — 2007. — Т. 3. — С. 192-196. (arXiv: cond-mat/0611252 [Архівовано 8 березня 2021 у Wayback Machine.])
  93. IBM Makes Quantum Computing Available on IBM Cloud to Accelerate Innovation. 4 травня 2016. Архів оригіналу за 24 січня 2021. Процитовано 2 лютого 2021.
  94. Quantum computing gets an API and SDK. 6 березня 2017. Архів оригіналу за 7 січня 2020. Процитовано 2 лютого 2021.
  95. Austrian and Chinese academies of sciences successfully conducted first inter-continental quantum video call. Австрійська академія наук. 29 вересня 2017. Архів оригіналу за 7 листопада 2017. Процитовано 1 листопада 2017.
  96. IBM Quantum Update: Q System One Launch, New Collaborators, and QC Center Plans. HPCwire. 10 січня 2019. Архів оригіналу за 12 листопада 2020. Процитовано 2 лютого 2021.
  97. Jin-Peng Liu; Herman Øie Kolden; Hari K. Krovi; Nuno F. Loureiro; Konstantina Trivisa; Andrew M. Childs (6 листопада 2020). Efficient quantum algorithm for dissipative nonlinear differential equations (PDF). Архів оригіналу (PDF) за 19 лютого 2021.
  98. Seth Lloyd; Giacomo De Palma; Can Gokler; Bobak Kiani; Zi-Wen Liu; Milad Marvian; Felix Tennie; Tim Palmer. Quantum algorithm for nonlinear differential equations (PDF). Архів оригіналу (PDF) за 5 січня 2021.
  99. Daniel Garisto (3 грудня 2020). Light-based Quantum Computer Exceeds Fastest Classical Supercomputers. Scientific American. Архів оригіналу за 2 листопада 2021. Процитовано 7 грудня 2020.
  100. Jeremy Hsu (9 грудня 2020). Photonic Quantum Computer Displays "Supremacy" Over Supercomputers. IEEE Spectrum. Архів оригіналу за 10 грудня 2020. Процитовано 10 грудня 2020.