Факторіальне кільце

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку

Факторіа́льне кільце́область цілісності , в якій кожен необоротний елемент представляється у вигляді добутку незвідних елементів , причому даний розклад єдиний в тому сенсі, що якщо то і після перенумерації маємо для всіх , де — оборотний елемент кільця (такі елементи називаються асоційованими). Самі елементи можуть бути теж асоційованими і навіть рівними.

Приклади[ред. | ред. код]

Властивості[ред. | ред. код]

  • Довільний незвідний елемент факторіального кільця є простим.
Нехай — незвідний елемент факторіального кільця . Тоді є необоротним. Якщо , тоді де . Елементи можна записати як добутки незвідних елементів:
Тоді
Оскільки є факторіальним кільцем то кожен елемент у добутку справа є рівним добутку одного із незвідних елементів з лівої сторони, тобто або і оборотного елемента. Відповідно або або . Тобто є простим ідеалом і є простим елементом.
  • Якщо R є факторіальним кільцем, то і кільце многочленів R[x] є факторіальним. Звідси випливає, що і кільце R[x1...xn] є факторіальним.
  • Кільце R є факторіальним тоді і тільки тоді коли довільний його простий ідеал містить простий елемент.
  • Якщо у області цілісності існує множина простих елементів таких, що кожен елемент із є добутком деяких елементів і оборотного елемента, то є факторіальним кільцем.
Оскільки є областю цілісності, то всі є незвідними елементами і кожен незвідний елемент із є добутком якогось одного елемента і оборотного елемента. З умови кожен елемент є добутком незвідних елементів. Якщо то кожен з є добутком якогось із і оборотного елемента. Оскільки є простим елементом, що ділить добуток, то ділить якийсь із Але де — оборотний елемент. Тому ділить Також і тому також ділить ( є простим і має ділити або , в останньому випадку був би оборотним, що неможливо). Тому і , а тому і відрізняються лише добутком на оборотний елемент. Скорочуючи і продовжуючи процес отримуємо, що є факторіальним кільцем.
  • Локалізація факторіального кільця по довільній мультиплікативній системі є факторіальним кільцем.
Нехай — незвідний елемент факторіального кільця. Якщо то є простим ідеалом у а тому є простим елементом. Із попереднього достатньо довести, що кожен ненульовий елемент є добутком таких елементів і оборотного елемента.
Спершу зауважимо, що якщо то є оборотним елементом. Якщо то оберненим елементом буде
Нехай Якщо є розкладом b у добуток незвідних елементів, то є розкладом b/1 у добуток незвідних і оборотних елементів.
Тоді дає необхідний результат оскільки 1/s є оборотним елементом.
  • Теорема Нагати. Нехай є областю цілісності, — деяка множина простих елементів і S — мультиплікативна множина елементами якої є скінченні добутки скінченних кількостей елементів (добуток пустої множини вважається рівним 1). Нехай задовольняють умову: для кожного елемента існують для яких b = sb' і b' не належить жодному із головних ідеалів Тоді якщо локалізація то і є факторіальним кільцем. Вказана умова, зокрема, виконується для всіх нетерових кілець або кілець всі ненульові елементи яких є добутками незвідних елементів.

Некомутативний випадок[ред. | ред. код]

Хоч термін «Факторіальне кільце» використовується переважно для комутативних кілець, подане вище означення можна узагальнити для некомутативного випадку.

Нехай R — деяке кільце, що не має дільників нуля. Дане кільце називається факторіальним, якщо довільний необоротний елемент a представляється у вигляді добутку незвідних елементів a=p1·...·pn (n≥1) причому даний розклад єдиний в тому сенсі, що якщо p1·...·pn=q1·...·qm, то m=n і після перенумерації маємо, що фактор-кільця і є ізоморфними[1].

Приклад[ред. | ред. код]

Множина кватерніонів a = a0 + a1i + a2j + a3k, де a0, a1, a2, a3 — цілі числа або непарні цілі числа поділені на 2 є некомутативним факторіальним кільцем.

Примітки[ред. | ред. код]

  1. Sivaramakrishnan. Certain number-theoretic episodes in algebra, ст. 245

Джерела[ред. | ред. код]

  • Ван дер Варден Б. Л. Алгебра. — Москва : Наука, 1975. — 623 с. — ISBN 5-8114-0552-9.(рос.)
  • Зарисский О., Самюэль П. Коммутативная алгебра. — Москва : ИЛ, 1963. — Т. 1. — 373 с.(рос.)
  • Ленг С. Алгебра. — Москва : Мир, 1968. — 564 с. — ISBN 5458320840.(рос.)
  • Бондаренко Є.В. (2012). Теорія кілець: навчальний посібник (PDF). Київ: РВЦ “Київський університет„. с. 64. (укр.)
  • Peskine, Christian (2009). An Algebraic Introduction to Complex Projective Geometry: Commutative Algebra. Cambridge Studies in Advanced Mathematics. Cambridge University Press. ISBN 9780521108478.
  • David Sharpe (1987). Rings and factorization. Cambridge University Press. ISBN 0-521-33718-6.
  • R. Sivaramakrishnan (2006). Certain number-theoretic episodes in algebra. CRC Press. ISBN 0-8247-5895-1