Метааналіз: відмінності між версіями

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку
[неперевірена версія][неперевірена версія]
Вилучено вміст Додано вміст
Немає опису редагування
Рядок 73: Рядок 73:
===== Модель з фіксованими ефектами =====
===== Модель з фіксованими ефектами =====
Модель з фіксованими ефектами забезпечує середньозважене значення з серії оцініваних досліджень. Зворотна дисперсія оцінок зазвичай використовується як вага дослідження, так що більші дослідження мають тенденцію до більшого внеску до середньозваженого ніж менші дослідження. Отже, коли в дослідженнях мета-аналізу переважає дуже велике дослідження, результати менших досліджень практично ігноруються.<ref name="pmid11884693">{{cite journal|author=Helfenstein U|year=2002|title=Data and models determine treatment proposals--an illustration from meta-analysis|url=|journal=Postgrad Med J|volume=78|issue=917|pages=131–4|doi=10.1136/pmj.78.917.131|pmc=1742301|pmid=11884693}}</ref> Найголовніше, що модель фіксованих ефектів передбачає, що всі включені дослідження досліджують одну і ту ж сукупність, використовують однакові визначення змінних та результатів тощо. Це припущення, як правило, нереальне, оскільки дослідження часто схильні до декількох джерел неоднорідності; напр. ефекти лікування можуть відрізнятися залежно від місцевості, рівнів дозування, умов дослідження, ...
Модель з фіксованими ефектами забезпечує середньозважене значення з серії оцініваних досліджень. Зворотна дисперсія оцінок зазвичай використовується як вага дослідження, так що більші дослідження мають тенденцію до більшого внеску до середньозваженого ніж менші дослідження. Отже, коли в дослідженнях мета-аналізу переважає дуже велике дослідження, результати менших досліджень практично ігноруються.<ref name="pmid11884693">{{cite journal|author=Helfenstein U|year=2002|title=Data and models determine treatment proposals--an illustration from meta-analysis|url=|journal=Postgrad Med J|volume=78|issue=917|pages=131–4|doi=10.1136/pmj.78.917.131|pmc=1742301|pmid=11884693}}</ref> Найголовніше, що модель фіксованих ефектів передбачає, що всі включені дослідження досліджують одну і ту ж сукупність, використовують однакові визначення змінних та результатів тощо. Це припущення, як правило, нереальне, оскільки дослідження часто схильні до декількох джерел неоднорідності; напр. ефекти лікування можуть відрізнятися залежно від місцевості, рівнів дозування, умов дослідження, ...

===== Модель випадкових ефектів =====
Загальна модель, яка використовується для синтезу гетерогенних досліджень, - це метааналіз випадкових ефектів. Це просто середньозважена середня величина ефекту групи досліджень. Вага, що застосовується в цьому процесі зваженого усереднення з метааналізом випадкових ефектів, досягається в два етапи:<ref>{{cite journal|author=Senn S|year=2007|title=Trying to be precise about vagueness|url=|journal=Stat Med|volume=26|issue=7|pages=1417–30|doi=10.1002/sim.2639|pmid=16906552}}</ref>

* Крок 1: Зважування зворотної дисперсії
* Крок 2: Розважування цього зважування на основі зворотної дисперсії шляхом застосування компонента дисперсії випадкових ефектів (КДВП), який просто виводиться зі ступеня мінливості розмірів ефекту в базових дослідженнях.

Це означає, що чим більша ця мінливість розмірів ефектів (інакше відома як неоднорідність), тим більше розважування, і можна досягти точки, коли результат метааналізу випадкових ефектів стає просто незваженим середнім розміром ефекту в ході досліджень. З іншого боку, коли всі розміри ефектів схожі (або мінливість не перевищує помилку вибірки), не застосовується КДВП, а метааналіз випадкових ефектів зводиться до метааналізу з фіксованими ефектами (лише зі зважуванням зворотньої дисперсії).

Ступінь цього зведення залежить виключно від двох факторів:<ref name="ReferenceA">{{cite journal|vauthors=Al Khalaf MM, Thalib L, Doi SA|year=2011|title=Combining heterogenous studies using the random-effects model is a mistake and leads to inconclusive meta-analyses|url=https://www.academia.edu/18670079|format=PDF|journal=Journal of Clinical Epidemiology|volume=64|issue=2|pages=119–23|doi=10.1016/j.jclinepi.2010.01.009|pmid=20409685}}</ref>

* Неоднорідність точності
* Неоднорідність розміру ефекту

Оскільки жоден із цих факторів автоматично не вказує на помилкове масштабне дослідження або більш надійні менші дослідження, перерозподіл ваг за цією моделлю не матиме відношення до того, що ці дослідження можуть запропонувати насправді. Дійсно, було продемонстровано, що перерозподіл ваг є просто в одному напрямку від більших до менших досліджень, оскільки гетерогенність збільшується, поки в кінцевому підсумку всі дослідження не мають однакової ваги і подальший перерозподіл неможливий.<ref name="ReferenceA" /> Інша проблема моделі випадкових ефектів полягає в тому, що найчастіше використовувані довірчі інтервали, як правило, не зберігають ймовірності їх покриття вище зазначеного номінального рівня і, таким чином, істотно занижують статистичну помилку і, можливо, завищують переконаність у своїх висновках.<ref name="Brockwell2001">{{cite journal|author1=Brockwell S.E.|author2=Gordon I.R.|year=2001|title=A comparison of statistical methods for meta-analysis|url=|journal=Statistics in Medicine|volume=20|issue=6|pages=825–840|doi=10.1002/sim.650|pmid=11252006}}</ref><ref name="Noma2011">{{cite journal|author=Noma H|date=Dec 2011|title=Confidence intervals for a random-effects meta-analysis based on Bartlett-type corrections|url=|journal=Stat Med|volume=30|issue=28|pages=3304–12|doi=10.1002/sim.4350|pmid=21964669|hdl-access=free|hdl=2433/152046}}</ref> Запропоновано кілька виправлень<ref>{{cite journal|vauthors=Brockwell SE, Gordon IR|year=2007|title=A simple method for inference on an overall effect in meta-analysis|url=|journal=Statistics in Medicine|volume=26|issue=25|pages=4531–4543|doi=10.1002/sim.2883|pmid=17397112}}</ref><ref>{{cite journal|vauthors=Sidik K, Jonkman JN|year=2002|title=A simple confidence interval for meta-analysis|url=|journal=Statistics in Medicine|volume=21|issue=21|pages=3153–3159|doi=10.1002/sim.1262|pmid=12375296}}</ref> але дебати тривають далі.<ref name="Noma2011" /><ref name="pmid19016302">{{cite journal|vauthors=Jackson D, Bowden J|year=2009|title=A re-evaluation of the 'quantile approximation method' for random effects meta-analysis|journal=Stat Med|volume=28|issue=2|pages=338–48|doi=10.1002/sim.3487|pmc=2991773|pmid=19016302}}</ref> Наступне занепокоєння полягає в тому, що середній ефект лікування іноді може бути навіть менш консервативним порівняно з моделлю з фіксованим ефектом<ref>{{cite journal|vauthors=Poole C, Greenland S|date=Sep 1999|title=Random-effects meta-analyses are not always conservative|url=|journal=Am J Epidemiol|volume=150|issue=5|pages=469–75|doi=10.1093/oxfordjournals.aje.a010035|pmid=10472946|doi-access=free}}</ref> і тому вводить в оману на практиці. Одне з запропонованих інтерпретаційних виправлень полягає у створенні інтервалу прогнозування навколо оцінки випадкових ефектів для відображення діапазону можливих ефектів на практиці.<ref>{{cite journal|vauthors=Riley RD, Higgins JP, Deeks JJ|year=2011|title=Interpretation of random effects meta-analyses|url=https://semanticscholar.org/paper/bee867566823eb532bcc635206051b2249cbb927|journal=British Medical Journal|volume=342|issue=|page=d549|doi=10.1136/bmj.d549|pmid=21310794}}</ref> Однак припущення при обчисленні такого інтервалу прогнозування полягає в тому, що випробування вважаються більш-менш однорідними суб'єктами, що включають популяції пацієнтів та порівняльне лікування, слід вважати взаємозамінними<ref name="pmid23494781">{{cite journal|author=Kriston L|year=2013|title=Dealing with clinical heterogeneity in meta-analysis. Assumptions, methods, interpretation|url=|journal=Int J Methods Psychiatr Res|volume=22|issue=1|pages=1–15|doi=10.1002/mpr.1377|pmc=6878481|pmid=23494781}}</ref> і це, як правило, недосяжно на практиці.

Найбільш широко застосовуваний метод для оцінки між дисперсією досліджень (КДВП) - це підхід DerSimonian-Laird (DL).<ref name="pmid3802833">{{cite journal|vauthors=[[Rebecca DerSimonian|DerSimonian R]], [[Nan Laird|Laird N]]|year=1986|title=Meta-analysis in clinical trials|journal=Control Clin Trials|volume=7|issue=3|pages=177–88|doi=10.1016/0197-2456(86)90046-2|pmid=3802833}}</ref> Існує кілька вдосконалених ітеративних (і обчислювально дорогих) методів обчислення різниці між дослідженнями (такі як максимальна ймовірність, імовірність профілю та обмежена максимальна ймовірність методів) та моделями випадкових ефектів за допомогою цих методів можна запустити в Stata за допомогою команди metaan.<ref name="metaan">{{cite journal|last1=Kontopantelis|first1=Evangelos|last2=Reeves|first2=David|date=1 August 2010|title=Metaan: Random-effects meta-analysis|url=https://www.researchgate.net/publication/227629391|journal=Stata Journal|volume=10|issue=3|pages=395–407|doi=10.1177/1536867X1001000307|via=ResearchGate|doi-access=free}}</ref> Команду metaan слід відрізняти від класичної команди metan (одиночна "a") в Stata, яка використовує оцінювач DL. Ці вдосконалені методи також були реалізовані у вільному та простому у використанні додатку Microsoft Excel, MetaEasy.<ref name="MetaEasy1">{{cite journal|last1=Kontopantelis|first1=Evangelos|last2=Reeves|first2=David|year=2009|title=MetaEasy:A Meta-Analysis Add-In for Microsoft Excel, Journal of Statistical Software 2009|journal=Journal of Statistical Software|volume=30|issue=7|doi=10.18637/jss.v030.i07|doi-access=free}}</ref><ref name="MetaEasy2">{{cite web|url=http://www.statanalysis.co.uk/meta-analysis.html|title=Developer's website|publisher=Statanalysis.co.uk|date=|accessdate=2018-09-18}}</ref> Однак порівняння між цими передовими методами та методом DL для обчислення дисперсії між дослідженнями показало, що виграш малий, а DL у більшості сценаріїв цілком адекватний.<ref name="KontopantelisSMMR10">{{cite journal|vauthors=Kontopantelis E, Reeves D|year=2012|title=Performance of statistical methods for meta-analysis when true study effects are non-normally distributed: A simulation study.|journal=Statistical Methods in Medical Research|volume=21|issue=4|pages=409–26|doi=10.1177/0962280210392008|pmc=|pmid=21148194}}</ref><ref name="KontopantelisSMMR112">{{cite journal|vauthors=Kontopantelis E, Reeves D|year=2012|title=Performance of statistical methods for meta-analysis when true study effects are non-normally distributed: a comparison between DerSimonian-Laird and restricted maximum likelihood|journal=SMMR|volume=21|issue=6|pages=657–9|doi=10.1177/0962280211413451|pmid=23171971}}</ref>

Однак більшість мета-аналізів включає в себе від 2 до 4 досліджень, і такий зразок частіше за все є недостатнім для точної оцінки гетерогенності. Таким чином, виявляється, що в невеликих метааналізах виходить некоректний нуль між оцінкою дисперсії дослідження, що призводить до помилкового припущення про однорідність. В цілому, виявляється, що гетерогенність постійно недооцінюється в мета-аналізах та аналізах чутливості, в яких передбачається, що високі рівні гетерогенності можуть бути інформативними.<ref name="KontopantelisP1">{{cite journal|vauthors=Kontopantelis E, Springate DA, Reeves D|year=2013|editor1-last=Friede|editor1-first=Tim|title=A Re-Analysis of the Cochrane Library Data: The Dangers of Unobserved Heterogeneity in Meta-Analyses|journal=PLoS ONE|volume=8|issue=7|pages=e69930|bibcode=2013PLoSO...869930K|doi=10.1371/journal.pone.0069930|pmc=3724681|pmid=23922860}}</ref> Ці зразки випадкових ефектів та програмні пакети, згадані вище, стосуються мета-аналізів, що сукупні з дослідженнями, і дослідникам, які бажають проводити індивідуальні метааналізи даних про пацієнтів (ІПД), необхідно враховувати підходи моделювання змішаних ефектів.<ref name="ipdforest">{{cite journal|last1=Kontopantelis|first1=Evangelos|last2=Reeves|first2=David|date=27 September 2013|title=A short guide and a forest plot command (ipdforest) for one-stage meta-analysis|url=https://www.researchgate.net/publication/257316967|journal=Stata Journal|volume=13|issue=3|pages=574–587|doi=10.1177/1536867X1301300308|via=ResearchGate|doi-access=free}}</ref>


== Примітки ==
== Примітки ==

Версія за 10:30, 19 липня 2020

Метааналіз - це статистичний аналіз, який поєднує результати багатьох наукових досліджень. Метааналіз може бути виконаний, коли існує кілька наукових досліджень, що стосуються одного і того ж питання у кожному окремому дослідженні, і описані результати дослідження, які, як очікується, мають певний ступінь помилки. Метою цього є використання статистичних підходів для отримання об'єднаної оцінки, найближчої до невідомої загальної істини, заснованої на тому, як сприймається ця помилка.

Існуючі методи метааналізу дають середньозважену оцінку від результатів окремих досліджень, і відрізняються способом розподілу цих ваг, а також способом, яким обчислюється невизначеність навколо створеної таким чином оцінки. На додаток до оцінки невідомої загальної істини, метааналіз має здатність протиставляти результати різних досліджень та визначати закономірності між результатами дослідження, джерела розбіжностей між цими результатами чи інші цікаві взаємозв'язки, які можуть з’явитися у контексті кількох досліджень.[1]

Ключовою перевагою такого підходу є агрегування інформації, що призводить до вищої статистичної потужності та більш надійної оцінку, ніж це можливо за результатами будь-якого окремого дослідження. Однак, виконуючи метааналіз, дослідник вимушений робити вибір, який може вплинути на результати, включаючи рішення про пошук досліджень, підбір досліджень на основі набору об'єктивних критеріїв, розгляд неповних даних, аналіз даних та врахування або неврахування упередженності публікації.[2] Судження, зроблені при виконанні мета-аналізу, можуть вплинути на результати. Наприклад, Ванус та його колеги вивчили чотири пари метааналізів на чотири теми (а) взаємозв'язок між виконанням роботи та задоволенням, (б) реалістичні попередні перегляди роботи, (в) співвідношення конфлікту ролей та неоднозначності та (г) завдання взаємозв'язку задоволення та прогулів, і проілюструвало, як різні виклики суджень, зроблені дослідниками, давали різні результати.[3]

Метааналізи часто, але не завжди, є важливими складовими процедури систематичного огляду. Наприклад, метааналіз може бути проведений на кількох клінічних випробуваннях медикаментозного лікування, щоб досягти кращого розуміння того, наскільки добре працює лікування. Тут зручно дотримуватися термінології, що використовується Кокранівською співпрацею,[4] і використовувати "метааналіз" для позначення статистичних методів поєднання доказів, залишаючи інші аспекти "синтезу дослідження" або "синтезу доказів", таких як поєднання інформації з якісних досліджень, для більш загального контексту систематичних оглядів . Метааналіз - це вторинне джерело.[5][6]

Історія

Історичні корені метааналізу можна простежити до досліджень астрономії 17 століття,[7] в той час як стаття, опублікована в 1904 р. у "Британському медичному журналі" статистиком Карлом Пірсоном [8] який зібрав дані декількох досліджень тифозного щеплення, розглядається як перший раз, коли мета-аналітичний підхід був використаний для узагальнення результатів багатьох клінічних досліджень.[9][10] Перший метааналіз всіх концептуально однакових експериментів, що стосуються певного дослідження, і проведений незалежними дослідниками, був визначений як книжка, що випускається в 1940 році, "Екстрасенсорне сприйняття після шістдесяти років" ", авторами є психологи університету Дюка Дж. Г. Пратт, Джозеф . Б. Рейн та ін.[11] Це охопило огляд 145 доповідей про експериментів зекстрасенсорне сприйняття , опублікованих з 1882 по 1939 рік, і включило оцінку впливу неопублікованих праць на загальний ефект (роблема вилучених файлів). Хоча метааналіз широко застосовується в епідеміології та доказовій медицині, метааналіз медикаментозного лікування не був опублікований до 1955 року. У 1970-х більш складні аналітичні методи вмкористовувались у освітніх дослідженнях починаючи з робіт Гена В. Гласса, Франка Л. Шмідта та Дж. Е. Хантера.

Термін "метааналіз" був введений у 1976 році статистиком Гене В. Глассом,[12] хто заявив "моє головне зацікавлення в даний час полягає в тому, що ми почали називати ... метааналіз досліджень. Термін трохи грандіозний, але він точний і вдалий ... Мета-аналіз відноситься до аналізу аналізів". Хоча це призвело до того, що він був визнаний сучасним засновником методу, методологія, яку він назвав "метааналізом", передувала його роботі протягом кількох десятиліть.[13][14] Статистична теорія, що стосується мета-аналізу, була сильно просунута роботами Намбері С. Раджу, Ларрі В. Хеджесом, Харрісом Купером, Інграм Олкін, Джон Е. Хантер , Jacob Cohen, Thomas C. Chalmers, Robert Rosenthal, Frank L. Schmidt та Дугласом Г. Бонеттом.

Етапи мета-аналізу

Метааналізу зазвичай передує систематичний огляд, оскільки це дозволяє ідентифікувати та критично оцінити всі відповідні докази (тим самим обмежуючи ризик упередженості у підсумкових оцінках). Загальні кроки наступні:

  1. Формулювання дослідницького питання, напр. з використанням моделі PICO (Population, Intervention, Comparison, Outcome - Популяція, Вплив, Порівняння, Результати).
  2. Пошук літератури
  3. Вибір досліджень ("критерії включення")
    1. На основі критеріїв якості, наприклад вимога рандомізації та осліплення в клінічному випробуванні
    2. Вибір конкретних досліджень на щодо визначеного предмету, напр. лікування раку молочної залози.
    3. Рішення, чи включати неопубліковані дослідження, щоб уникнути упередженості публікацій ( проблема з вилученням файлів)
  4. Вирішити, які залежні змінні чи підсумкові заходи дозволені. Наприклад, при розгляді мета-аналізу опублікованих (агрегованих) даних:
    • Відмінності (дискретні дані)
    • Засоби (безперервні дані)
    • Хеджи g - популярна підсумкова величина для безперервних даних, яка стандартизується з метою усунення різниць масштабу, але він включає індекс зміни між групами:
      1. у якій є середнім значенням для лікуванням, - середнє значення контрольної групи, об'єднана дисперсія.
  5. Вибір моделі метааналізу, напр. метааналіз з фіксованим ефектом або випадковими ефектами.
  6. Вивчіть джерела гетерогенності між дослідженнями, наприклад за допомогою аналізу підгруп або метарегресії. Формальні вказівки щодо проведення та звітування про метааналізи надаються Посібником з Кокрана.

Методи та припущення

Підходи

Загалом при проведенні метааналізу можна виділити два типи доказів: індивідуальні дані учасника (ІДЧ) та агреговані дані (АД). Агреговані дані можуть бути прямими або непрямими.

АД частіше доступні (наприклад, з літератури) і, як правило, представляють зведені оцінки, такі як відношення переваги або відносний ризик. Це можна безпосередньо синтезувати в рамках концептуально подібних досліджень, використовуючи декілька підходів (див. нижче). З іншого боку, непрямі агреговані дані вимірюють дію двох методів лікування, які порівнювались проти аналогічної контрольної групи в метааналізі. Наприклад, якщо лікування A і лікування B безпосередньо порівнювались з плацебо в окремих мета-аналізах, ми можемо використовувати ці два об'єднані результати, щоб отримати оцінку ефектів від A проти B у непрямому порівнянні як ефект A проти плацебо мінус ефект B проти плацебо.

Докази ІДЧ представляють необроблені дані, зібрані дослідними центрами. Ця відмінність викликала потребу в різних метааналітичних методах, коли потрібен синтез доказів, і призвела до розробки одноетапних та двоступеневих методів.[15] Одноетапними методами ІДЧ усіх досліджень моделюються одночасно, враховуючи групування учасників в рамках досліджень. Двоетапні методи спочатку обчислюють підсумкову статистику для АД з кожного дослідження, а потім обчислюють загальну статистику як середньозважену статистику дослідження. За рахунок зведення ІДЧ до АД, двоступеневі методи також можуть застосовуватися, коли доступний ІДЧ; це робить їх привабливим вибором при виконанні метааналізу. Хоча загальноприйнято вважати, що одноетапні та двоступеневі методи дають подібні результати, останні дослідження показали, що вони можуть іноді призводити до різних висновків.[16][17]

Статистичні моделі для агрегованих даних

Прямі докази: Моделі, що містять лише наслідки дослідження

Модель з фіксованими ефектами

Модель з фіксованими ефектами забезпечує середньозважене значення з серії оцініваних досліджень. Зворотна дисперсія оцінок зазвичай використовується як вага дослідження, так що більші дослідження мають тенденцію до більшого внеску до середньозваженого ніж менші дослідження. Отже, коли в дослідженнях мета-аналізу переважає дуже велике дослідження, результати менших досліджень практично ігноруються.[18] Найголовніше, що модель фіксованих ефектів передбачає, що всі включені дослідження досліджують одну і ту ж сукупність, використовують однакові визначення змінних та результатів тощо. Це припущення, як правило, нереальне, оскільки дослідження часто схильні до декількох джерел неоднорідності; напр. ефекти лікування можуть відрізнятися залежно від місцевості, рівнів дозування, умов дослідження, ...

Модель випадкових ефектів

Загальна модель, яка використовується для синтезу гетерогенних досліджень, - це метааналіз випадкових ефектів. Це просто середньозважена середня величина ефекту групи досліджень. Вага, що застосовується в цьому процесі зваженого усереднення з метааналізом випадкових ефектів, досягається в два етапи:[19]

  • Крок 1: Зважування зворотної дисперсії
  • Крок 2: Розважування цього зважування на основі зворотної дисперсії шляхом застосування компонента дисперсії випадкових ефектів (КДВП), який просто виводиться зі ступеня мінливості розмірів ефекту в базових дослідженнях.

Це означає, що чим більша ця мінливість розмірів ефектів (інакше відома як неоднорідність), тим більше розважування, і можна досягти точки, коли результат метааналізу випадкових ефектів стає просто незваженим середнім розміром ефекту в ході досліджень. З іншого боку, коли всі розміри ефектів схожі (або мінливість не перевищує помилку вибірки), не застосовується КДВП, а метааналіз випадкових ефектів зводиться до метааналізу з фіксованими ефектами (лише зі зважуванням зворотньої дисперсії).

Ступінь цього зведення залежить виключно від двох факторів:[20]

  • Неоднорідність точності
  • Неоднорідність розміру ефекту

Оскільки жоден із цих факторів автоматично не вказує на помилкове масштабне дослідження або більш надійні менші дослідження, перерозподіл ваг за цією моделлю не матиме відношення до того, що ці дослідження можуть запропонувати насправді. Дійсно, було продемонстровано, що перерозподіл ваг є просто в одному напрямку від більших до менших досліджень, оскільки гетерогенність збільшується, поки в кінцевому підсумку всі дослідження не мають однакової ваги і подальший перерозподіл неможливий.[20] Інша проблема моделі випадкових ефектів полягає в тому, що найчастіше використовувані довірчі інтервали, як правило, не зберігають ймовірності їх покриття вище зазначеного номінального рівня і, таким чином, істотно занижують статистичну помилку і, можливо, завищують переконаність у своїх висновках.[21][22] Запропоновано кілька виправлень[23][24] але дебати тривають далі.[22][25] Наступне занепокоєння полягає в тому, що середній ефект лікування іноді може бути навіть менш консервативним порівняно з моделлю з фіксованим ефектом[26] і тому вводить в оману на практиці. Одне з запропонованих інтерпретаційних виправлень полягає у створенні інтервалу прогнозування навколо оцінки випадкових ефектів для відображення діапазону можливих ефектів на практиці.[27] Однак припущення при обчисленні такого інтервалу прогнозування полягає в тому, що випробування вважаються більш-менш однорідними суб'єктами, що включають популяції пацієнтів та порівняльне лікування, слід вважати взаємозамінними[28] і це, як правило, недосяжно на практиці.

Найбільш широко застосовуваний метод для оцінки між дисперсією досліджень (КДВП) - це підхід DerSimonian-Laird (DL).[29] Існує кілька вдосконалених ітеративних (і обчислювально дорогих) методів обчислення різниці між дослідженнями (такі як максимальна ймовірність, імовірність профілю та обмежена максимальна ймовірність методів) та моделями випадкових ефектів за допомогою цих методів можна запустити в Stata за допомогою команди metaan.[30] Команду metaan слід відрізняти від класичної команди metan (одиночна "a") в Stata, яка використовує оцінювач DL. Ці вдосконалені методи також були реалізовані у вільному та простому у використанні додатку Microsoft Excel, MetaEasy.[31][32] Однак порівняння між цими передовими методами та методом DL для обчислення дисперсії між дослідженнями показало, що виграш малий, а DL у більшості сценаріїв цілком адекватний.[33][34]

Однак більшість мета-аналізів включає в себе від 2 до 4 досліджень, і такий зразок частіше за все є недостатнім для точної оцінки гетерогенності. Таким чином, виявляється, що в невеликих метааналізах виходить некоректний нуль між оцінкою дисперсії дослідження, що призводить до помилкового припущення про однорідність. В цілому, виявляється, що гетерогенність постійно недооцінюється в мета-аналізах та аналізах чутливості, в яких передбачається, що високі рівні гетерогенності можуть бути інформативними.[35] Ці зразки випадкових ефектів та програмні пакети, згадані вище, стосуються мета-аналізів, що сукупні з дослідженнями, і дослідникам, які бажають проводити індивідуальні метааналізи даних про пацієнтів (ІПД), необхідно враховувати підходи моделювання змішаних ефектів.[36]

Примітки

  1. Greenland S, O' Rourke K: Meta-Analysis. Page 652 in Modern Epidemiology, 3rd ed. Edited by Rothman KJ, Greenland S, Lash T. Lippincott Williams and Wilkins; 2008.
  2. Walker E, Hernandez AV, Kattan MW (2008). Meta-analysis: Its strengths and limitations. Cleve Clin J Med. 75 (6): 431—9. doi:10.3949/ccjm.75.6.431. PMID 18595551.
  3. Wanous, John P.; Sullivan, Sherry E.; Malinak, Joyce (1989). The role of judgment calls in meta-analysis. Journal of Applied Psychology. 74 (2): 259—264. doi:10.1037/0021-9010.74.2.259. ISSN 0021-9010.
  4. Glossary at Cochrane Collaboration. cochrane.org.
  5. Gravetter, Frederick J.; Forzano, Lori-Ann B. (1 січня 2018). Research Methods for the Behavioral Sciences (англ.). Cengage Learning. с. 36. ISBN 9781337613316. Some examples of secondary sources are (1) books and textbooks in which the author describes and summarizes past research, (2) review articles or meta-analyses...
  6. Adams, Kathrynn A.; Lawrence, Eva K. (2 лютого 2018). Research Methods, Statistics, and Applications (англ.). SAGE Publications. ISBN 9781506350462. The most common types of secondary sources found in academic journals are literature reviews and meta-analyses.
  7. PLACKETT, R. L. (1958). Studies in the History of Probability and Statistics: Vii. The Principle of the Arithmetic Mean. Biometrika. 45 (1–2): 133. doi:10.1093/biomet/45.1-2.130. Процитовано 29 May 2016.
  8. Pearson K (1904). Report on certain enteric fever inoculation statistics. BMJ. 2 (2288): 1243—1246. doi:10.1136/bmj.2.2288.1243. PMC 2355479. PMID 20761760.
  9. Nordmann AJ, Kasenda B, Briel M (Mar 9, 2012). Meta-analyses: what they can and cannot do. Swiss Medical Weekly. 142: w13518. doi:10.4414/smw.2012.13518. PMID 22407741.
  10. O'Rourke K (1 грудня 2007). An historical perspective on meta-analysis: dealing quantitatively with varying study results. J R Soc Med. 100 (12): 579—582. doi:10.1258/jrsm.100.12.579. PMC 2121629. PMID 18065712.
  11. Pratt JG, Rhine JB, Smith BM, Stuart CE, Greenwood JA. Extra-Sensory Perception after Sixty Years: A Critical Appraisal of the Research in Extra-Sensory Perception. New York: Henry Holt, 1940
  12. Glass G. V (1976). Primary, secondary, and meta-analysis of research. Educational Researcher. 5 (10): 3—8. doi:10.3102/0013189X005010003.
  13. Cochran WG (1937). Problems Arising in the Analysis of a Series of Similar Experiments. Journal of the Royal Statistical Society. 4 (1): 102—118. doi:10.2307/2984123. JSTOR 2984123.
  14. Cochran WG, Carroll SP (1953). A Sampling Investigation of the Efficiency of Weighting Inversely as the Estimated Variance. Biometrics. 9 (4): 447—459. doi:10.2307/3001436. JSTOR 3001436.
  15. Debray, Thomas P. A.; Moons, Karel G. M.; van Valkenhoef, Gert; Efthimiou, Orestis; Hummel, Noemi; Groenwold, Rolf H. H.; Reitsma, Johannes B.; on behalf of the GetReal methods review group (1 грудня 2015). Get real in individual participant data (IPD) meta-analysis: a review of the methodology. Research Synthesis Methods (англ.). 6 (4): 293—309. doi:10.1002/jrsm.1160. ISSN 1759-2887. PMC 5042043. PMID 26287812.
  16. Debray TP, Moons KG, Abo-Zaid GM, Koffijberg H, Riley RD (2013). Individual participant data meta-analysis for a binary outcome: one-stage or two-stage?. PLoS ONE. 8 (4): e60650. Bibcode:2013PLoSO...860650D. doi:10.1371/journal.pone.0060650. PMC 3621872. PMID 23585842.{{cite journal}}: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом (посилання)
  17. Burke, Danielle L.; Ensor, Joie; Riley, Richard D. (28 лютого 2017). Meta-analysis using individual participant data: one-stage and two-stage approaches, and why they may differ. Statistics in Medicine (англ.). 36 (5): 855—875. doi:10.1002/sim.7141. ISSN 1097-0258. PMC 5297998. PMID 27747915.
  18. Helfenstein U (2002). Data and models determine treatment proposals--an illustration from meta-analysis. Postgrad Med J. 78 (917): 131—4. doi:10.1136/pmj.78.917.131. PMC 1742301. PMID 11884693.
  19. Senn S (2007). Trying to be precise about vagueness. Stat Med. 26 (7): 1417—30. doi:10.1002/sim.2639. PMID 16906552.
  20. а б Al Khalaf MM, Thalib L, Doi SA (2011). Combining heterogenous studies using the random-effects model is a mistake and leads to inconclusive meta-analyses (PDF). Journal of Clinical Epidemiology. 64 (2): 119—23. doi:10.1016/j.jclinepi.2010.01.009. PMID 20409685.
  21. Brockwell S.E.; Gordon I.R. (2001). A comparison of statistical methods for meta-analysis. Statistics in Medicine. 20 (6): 825—840. doi:10.1002/sim.650. PMID 11252006.
  22. а б Noma H (Dec 2011). Confidence intervals for a random-effects meta-analysis based on Bartlett-type corrections. Stat Med. 30 (28): 3304—12. doi:10.1002/sim.4350. hdl:2433/152046. PMID 21964669.
  23. Brockwell SE, Gordon IR (2007). A simple method for inference on an overall effect in meta-analysis. Statistics in Medicine. 26 (25): 4531—4543. doi:10.1002/sim.2883. PMID 17397112.
  24. Sidik K, Jonkman JN (2002). A simple confidence interval for meta-analysis. Statistics in Medicine. 21 (21): 3153—3159. doi:10.1002/sim.1262. PMID 12375296.
  25. Jackson D, Bowden J (2009). A re-evaluation of the 'quantile approximation method' for random effects meta-analysis. Stat Med. 28 (2): 338—48. doi:10.1002/sim.3487. PMC 2991773. PMID 19016302.
  26. Poole C, Greenland S (Sep 1999). Random-effects meta-analyses are not always conservative. Am J Epidemiol. 150 (5): 469—75. doi:10.1093/oxfordjournals.aje.a010035. PMID 10472946.
  27. Riley RD, Higgins JP, Deeks JJ (2011). Interpretation of random effects meta-analyses. British Medical Journal. 342: d549. doi:10.1136/bmj.d549. PMID 21310794.
  28. Kriston L (2013). Dealing with clinical heterogeneity in meta-analysis. Assumptions, methods, interpretation. Int J Methods Psychiatr Res. 22 (1): 1—15. doi:10.1002/mpr.1377. PMC 6878481. PMID 23494781.
  29. DerSimonian R, Laird N (1986). Meta-analysis in clinical trials. Control Clin Trials. 7 (3): 177—88. doi:10.1016/0197-2456(86)90046-2. PMID 3802833.
  30. Kontopantelis, Evangelos; Reeves, David (1 August 2010). Metaan: Random-effects meta-analysis. Stata Journal. 10 (3): 395—407. doi:10.1177/1536867X1001000307 — через ResearchGate.
  31. Kontopantelis, Evangelos; Reeves, David (2009). MetaEasy:A Meta-Analysis Add-In for Microsoft Excel, Journal of Statistical Software 2009. Journal of Statistical Software. 30 (7). doi:10.18637/jss.v030.i07.
  32. Developer's website. Statanalysis.co.uk. Процитовано 18 вересня 2018.
  33. Kontopantelis E, Reeves D (2012). Performance of statistical methods for meta-analysis when true study effects are non-normally distributed: A simulation study. Statistical Methods in Medical Research. 21 (4): 409—26. doi:10.1177/0962280210392008. PMID 21148194.
  34. Kontopantelis E, Reeves D (2012). Performance of statistical methods for meta-analysis when true study effects are non-normally distributed: a comparison between DerSimonian-Laird and restricted maximum likelihood. SMMR. 21 (6): 657—9. doi:10.1177/0962280211413451. PMID 23171971.
  35. Kontopantelis E, Springate DA, Reeves D (2013). Friede T (ред.). A Re-Analysis of the Cochrane Library Data: The Dangers of Unobserved Heterogeneity in Meta-Analyses. PLoS ONE. 8 (7): e69930. Bibcode:2013PLoSO...869930K. doi:10.1371/journal.pone.0069930. PMC 3724681. PMID 23922860.{{cite journal}}: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом (посилання)
  36. Kontopantelis, Evangelos; Reeves, David (27 September 2013). A short guide and a forest plot command (ipdforest) for one-stage meta-analysis. Stata Journal. 13 (3): 574—587. doi:10.1177/1536867X1301300308 — через ResearchGate.