Файл:Foucault-anim.gif
Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації
Перейти до пошуку
Foucault-anim.gif (448 × 336 пікселів, розмір файлу: 170 КБ, MIME-тип: image/gif, кільцеве, 81 кадр, 8,1с)
Відомості про цей файл містяться на Вікісховищі — централізованому сховищі вільних файлів мультимедіа для використання в проектах Фонду Вікімедіа. |
Entre Foucault-anim.gif, Foucault-ortz.gif et Foucault-soleil.gif, seule la prise de vue diffère, ici avec Foucault-anim.gif, la vue est normale, c'est-à-dire d'un repère fixe par rapport au Panthéon de Paris
-
Français : Vue standardEnglish: Standard viewDeutsch: Standardsicht
-
Français : Vue du plan d'oscillationEnglish: View from the oscillation planeDeutsch: Sicht von dem Oszillationsplan
-
Français : Vue du soleilEnglish: View from the sunDeutsch: Sicht von der Sonne
-
Français : Notes pour la compréhension du programme de calcul du pendule de Foucault vu du SoleilEnglish: Notations used for the Pendulum animations, especially for the view from the sun.Deutsch: Verwendete Bezeichnungen für die Pendel-Animationen, insbesondere für die Sicht von der Sonne.
Зміст
Опис файлу
Français : Le programme est décomposé en deux fichiers, foucault-anim.gp et foucault-iter.gp . Il suffit de compiler par une commande du genre :
gnuplot foucault-anim.gp
pour obtenir le fichier .gif . Se reporter au programme pour les paramètres. En particulier fixe=0 donne le fichier anim.gif, fixe=1 le fichier rotz.gif et fixe=2 le fichier soleil.gif .
- Le logiciel libre Gnuplot fonctionne sous tous les systèmes d'exploitation. Pour obtenir les fonctionnalités des fichiers gif animés, il faut néanmoins utiliser une version 4.2 ou 4.3 qu'on peut trouver sur le CVS.
- Se reporter également à la page http://fr.wikipedia.org/w/index.php?title=Pendule_de_Foucault&oldid=15105524 pour les équations du mouvement du pendule.
- Pour le calcul de l'ombre du poteau central, voir les notes manuscrites Image:Foucault-solaire-ecliptique-notes.jpg qui peuvent aider à la compréhension des notations.
- Pour le calcul de la corde vibrante, il s'agit d'une simple sinusoïde et on peut se reporter à la page de Wikipédia sur les ondes sur une corde vibrante.
- Si vous voulez comprendre comment faire une animation plus simple du pendule, vous devez plutôt vous reporter aux toutes premières versions de cette animation en consultant l'historique de cette page. A moins d'une erreur, vous devriez trouver le fichier .gif correspondant dans l'historique des uploads.
- Si vous voulez améliorer le graphique, prière de respecter la licence GPL et d'indiquer votre nom, de décrire vos modifications et d'incrémenter le numéro de version.
English: The programme consists in two files foucault-anim.gp and foucault-iter.gp. In order to get one animated gif, just do the command:
gnuplot foucault-anim.gp
- Look at the section concerning the parameters to get a specific gif (anim for fixe=0, rotz for fixe=1 or soleil for fixe=2).
- Gnuplot is an open source software which runs on any operating system. But in order to produce animated gif images, you need to download a version 4.2 or above from the CVS tree.
- Please refer to http://fr.wikipedia.org/w/index.php?title=Pendule_de_Foucault&oldid=15105524 for the main equations of the pendulum.
- For the computation of the shadow of the central stick according to day, time, latitude, please refer to the manuscript Image:Foucault-solaire-ecliptique-notes.jpg which could help understanding the parameters and notations used.
- For the waving cable, I simply used a sine equation which came from the Wikipedia French page on the vibrating string.
- If you are interested in how to create simpler animation using gnuplot, the suggestion is to run a former version of this page (in the history). You should find the corresponding gif file in the history of the uploads.
- If you want to improve the graphics, or add legend for other languages, please respect the GPL licence by adding your name, describing the changes and incrementing the version number.
Source du programme GNUPLOT sous licence GPL
Foucault-anim.gp
Gnuplot source
reset
set ter x11 # or windows on Windows
# Programme Gnuplot foucault-anim.gp, ne fonctionne qu'avec une version >=4.2 et une libgd récente
# Nbrouard 7 mars 2007 v1.0 Sous licence GPL. GNU General Public License
# Nbrouard 12 mars 2007 v1.1
# Ajout de l'ellipse et simplification des équations
# Nbrouard 14 mars 2007 v1.2
# Ajout du fil du pendule.
# Nbrouard 16 mars 2007 v1.4
# Suppression des axes et ajout d'une coupole
# Indication pour le traitement des caractères unicode UTF-8
# Nbrouard 21 mars 2007 v1.5
# Ajout gifsicle pour réduire la taille.
# Nbrouard 7 avril 2007 v1.6
# Ajout d'un poteau central, sorte de cadran solaire vertical,
# dont l'ombre tourne plus vite que le plan d'oscillation
# Nbrouard 7 avril 2007 v1.7
# Ajout d'une troisième vue depuis le soleil
# Nbrouard 12 avril 2007 v1.8
# Ajout d'une corde pour tendre le pendule loin de son point
# d'équilibre. On attend la fin des oscillations du cable puis on
# brûle la corde qui libère le pendule.
# Nbrouard 6 novembre 2010 v1.9
# According to http://commons.wikimedia.org/wiki/Category:Animated_gifs_exceeding_the_12.5MP_limit
# the thumbnails stopped to be animated because the original files were 640x480 with 81 frames = 24.9MP.
# Now, I reduced to 448x336 x 81 = 12.2MP below the limit of 12.5MP
# Dernière version sous http://commons.wikimedia.org/wiki/Image:Foucault-rotz.gif
g=9.81 # gravité g/s2
l=67. # longueur du pendule en mètres
omega=sqrt(g/l)
# Choisir la vitesse de rotation de la Terre
Omega=2.*pi/24./3600. # Rotation de la Terre, 24 heures par jour
Omega=2.*pi/(23.+(56./60.))/3600. # Rotation de la Terre, 23h56 jour sidéral (pour le 3e dessin)
Omega=2.*pi/3600.*60. # Rotation très rapide en 1/60e d'heure pour un dessin
Omega=2.*pi/3600./24.*24.*60./1.5 # Rotation très rapide en 2/3*1/60e d'heure 90 secondes pour le premier dessin
Omega=2.*pi/3600./24.*24.*60./3.5 # Rotation très rapide en 3.5 1/60e d'heure soit 110 secondes pour le second dessin
print "Période de la Terre 2.*pi/Omega= ",2.*pi/Omega, " secondes"
theta=(48.+52./60.)/360*2.*pi # latitude de 48 degrés 52 minutes
omegz=sqrt(omega*omega+Omega*Omega*sin(theta)*sin(theta))
complex(x,y)=x*{1,0}+y*{0,1} # fonction utile
# cas où le pendule est propulsé du centre avec une vitesse de 2m/s (cas irréaliste non dessiné)
z0={0,0}
vz=2 # Si propulsé au centre avec une vitesse de 2 m/s
zp0=complex(vz,0)
# cas 'historique' où le pendule est lancé sans vitesse
# initiale à z0 mètres à l'est du centre.
z0={6.,0} # pour le 3e dessin
z0=l*3./4.*{1,0} # pour les premier et second dessins
zp0={0,0}
print "Vitesse initiale ",zp0
c1=z0/2.*(1+Omega/omegz*sin(theta))*{1,0}-zp0/2./omegz*{0,1}
c2=z0/2.*(1-Omega/omegz*sin(theta))*{1,0}+zp0/2./omegz*{0,1}
unset label
eix(x)=cos(x)*{1,0}+sin(x)*{0,1}
#z(t)=c1*eix(-(Omega*sin(theta)-omegz)*t) + c2*eix(-(Omega*sin(theta)+omegz)*t)
z(t)=eix(-(Omega*sin(theta))*t)*(z0*(cos(omegz*t)*{1,0}+Omega*sin(theta)/omegz*sin(omegz*t)*{0,1})+zp0/omegz*sin(omegz*t))
set parametric
# Trace dans le pseudo plan d'oscillation (pas dessiné)
#plot real(c1*eix(omegz*t)+c2*eix(-omegz*t)), imag(c1*eix(omegz*t)+c2*eix(-omegz*t))
#plot [t=0:3.65*2.*pi/omegz] [-abs(z0):abs(z0)] [-abs(z0):abs(z0)] real(z(t)),imag(z(t))
h(t)=-sqrt(l*l-abs(z(t))*abs(z(t)))+l
hz=h(0)
# La coupole du Panthéon : nombre d'ogives 3 par défaut
# Il faut la tracer en paramétrique pour t variant de O à tf.
nogives=3.
spx(t,tf)= l*(cos(floor(t/tf*nogives)*pi/nogives)*cos(t/tf*pi*nogives))
spy(t,tf)= l*(sin(floor(t/tf*nogives)*pi/nogives)*cos(t/tf*pi*nogives))
sph(t,tf)= l*abs(sin(t/tf*pi*nogives))
#sph(t,tf)= l*abs(sin((abs((t-tf/nogives))/tf*nogives<1.e-2?pi*nogives:t/tf*nogives*pi)))
# Le fil du pendule
px(t,tf)= t/tf*real(z(tf))
py(t,tf) =t/tf*imag(z(tf))
ph(t,tf) =l+t/tf*(h(tf)-l)
# L'oscillation du fil du pendule (avant le lancement)
nonde=2.
bonde=2.
T=23
mu=1
v=sqrt(T/mu)
onde(x,t)=bonde*sin(nonde*pi*x/l)*cos(nonde*pi*v*t/l)
tondmax=l/v/nonde; tondmin=l/v/nonde/2.;tond=tondmin/2.
print "tondmax=",l/v/nonde," tondmin=",l/v/nonde/2.
xonde(t,tf,ti)=t/tf*l*real(z(tf))/l+(l-h(tf))/l*onde(t/tf*l,ti)
yonde(t,tf,ti)=0.
zonde(t,tf,ti)=l-t/tf*(l-h(tf))+real(z(tf))/l*onde(t/tf*l,ti);
# La corde qui retient le pendule et doit être brûlée.
a=2. # 20 centimètre de rayon pour le pendule lui-même
eta=pi/20. # a ajuster pour le graphique.
xcorde(t,tf)=z0+a*(sin(eta)*(1.-t/tf)+t/tf/sin(eta))
ycorde(t,tf)=a*cos(eta)*(1.-t/tf)
#--- Paramètres
# Langues
lang="de"
lang="en"
lang="fr" # par défaut
# Type de repère
fixe=0 # Dessin dans le repère terrestre : foucault-anim.gif
fixe=1 # Dessin dans le plan du pendule : foucault-rotz.gif
#fixe=2 # Vue du soleil : foucault-soleil.gif
# Taille des fichiers animés
thumb=-1 # X11 or Win
thumb=0 # 448x336
#thumb=1 # 180x135 Miniatures par défaut de Wikipédia
split=1 # Si on souhaite des fichiers images séparés (dans un sous-répertoire)
split=0
# Le cadran solaire
#splot [t=0:2*pi] [:] [-2*pi:2*pi] [-2*pi:2*pi] 0.,0.,t with line lt 7, cos(psi)*t,sin(psi)*t,0 with line lt -1
epsilona=-(23./360.+26./360./60.)*2.*pi # angle apparent du zenith avec l'étoile polaire.
# 23°26' été ou hiver
epsilona=0./360.*2.*pi # angle apparent du zenith avec l'étoile polaire. Il dépend
# de la saison. Il vaut 0 pour les équinoxes, positif en été et négatif en hiver
htig=10. # hauteur de la tige en mètres
heure=(6.-12.)/24*2.*pi # 6 heures (ombre infinie aux équinoxes)
heure=(12.-12.)/24*2.*pi # Midi en radian
#-- Fin des paramètres
# theta-epsilona = angle du zenith avec les rayons de soleil à midi
# phi angle du zenith avec les rayons de soleil à l'heure h
phi(heure)=acos((cos(theta)*cos(epsilona)*cos(heure)+sin(theta)*sin(epsilona)))
X(heure)=cos(epsilona)*sin(heure)
Y(heure)=sin(theta)*cos(epsilona)*cos(heure)-cos(theta)*sin(epsilona)
Z(heure)=cos(theta)*cos(epsilona)*cos(heure)+sin(theta)*sin(epsilona)
#print X(heure)*X(heure)+Y(heure)*Y(heure)+Z(heure)*Z(heure) # vaut 1
#heurefin=heure+Omega*tf # en radian
debjour=acos(-tan(theta)*tan(epsilona))*24./2./pi-12. # Heure de début du jour ou fin du jour pour phi=pi/2
#splot [t=0:2*pi] [:] [-3*pi:3*pi] [-3*pi:3*pi] 0.,0.,htig*t/2./pi with line lt 7, X(heure)*htig*t/2./pi*tan(phi),Y(heure)*htig*t/2./pi,0 with line lt -1
# Pour traiter des caractères UTF-8, il faut obtenir par exemple des polices TrueType
# voir le site http://corefonts.sourceforge.net/
# Dans ce cas on peut faire set ter gif font "arial" 14 mais il faut
# que l'environnement GDFONTPATH pointe sur le répertoire TrueType :export GDFONTPATH="/usr/share/fonts/msttcorefonts/"
# export GNUPLOT_DEFAULT_GDFONT="arial"
if(lang ne "fr") ficlang=sprintf("-%s",lang); else ficlang="";
if (lang eq "de") Est="Osten"; Ouest="Westen"; Nord="Norden"; Sud="Süden"; \
else if (lang eq "en") Est="East"; Ouest="West"; Nord="North"; Sud="South"; \
else Est="Est"; Ouest="Ouest"; Nord="Nord"; Sud="Sud";
unset label
set label Est at l*1.2,0,0 center
set label Ouest at -l*1.2,0,0 center
set label Nord at 0,l*1.2,0 center
set label Sud at 0,-l*1.2,0 center
#set xlabel "Ouest <-> Est en metres"
#set ylabel "Sud <-> Nord en metres"
#set samples 100
set xyplane at 0
#set size 0.75,1 # aspect circulaire 480/640=0.75 # Merci à Michel Barbetorte 07/03/07
rotationz=28
rotationz=0
rotationx=50
#set view rotationx,rotationz,1,1.5
set view rotationx,rotationz,1,1.0
# dessin à l'écran pour voir
splot [t=0:3.65*2.*pi/omegz] [:] [-abs(z0):abs(z0)] [-abs(z0):abs(z0)] [0:l] real(z(t)),imag(z(t)),((t<pi/omegz)&&(t>0)?h(t):1/0) with lines lt palette , real(z(t)),imag(z(t)),0 with lines
unset title
unset key
unset xtics
unset ytics
unset ztics
set border 0
set size square
set size 1.3,1.3
set size 1.5,1.5
set size 1.54,1.54
#set size 0.75,1
#set size 1.0,1.0
set origin -0.4,-0.15
#set origin -0.4,-0.15
set origin -0.2,-0.15
#set origin 0.,0.
sampbase=700
set samples sampbase
n=24
tdelta=2.*pi/omegz/n
tfin=12*2.*pi/omegz
tfin=3*2.*pi/omegz
#tfin=pi/omegz
limit_iterations=9*n
#limit_iterations=6
#limit_iterations=13
tmin=1.e-3
tdeb=tdelta
tdeb=tmin
iteration_count=0
if(fixe==1) rotationz=75.; else rotationz=28.
set view rotationx,rotationz,1,1.0
#set ter gif size 640,480 large animate optimize
# set ter gif animate optimize size 640,480 \
# xffffff x000000 x404040 \
# xff0000 xffa500 x66cdaa xcdb5cd \
# xadd8e6 x0000ff xdda0dd x9500d3 # defaults
if(thumb==1) xpix=180;ypix=135; else xpix=448;ypix=336;
#if(thumb==1) xpix=180;ypix=135; else xpix=640;ypix=480;
#if(thumb==1) xpix=180;ypix=135; else xpix=540;ypix=405;
if(fixe==1) tfixe="rotz";else if (fixe==2) tfixe="soleil"; else tfixe="anim";
set size 1.54*ypix/xpix,1.54
iteration_count=0
if(thumb==1) labpix=sprintf("%dx%d-",xpix,ypix); else labpix="";
if(split != 1) ficsortie=sprintf("%sfoucault-%s%s.gif",labpix,tfixe,ficlang) # else voir dans la boucle
if(thumb==-1) set ter x11; set out; else if(split==1) set ter gif animate optimize size xpix,ypix xffffff x000000 xa0a0a0 xff0000 x00c000 x0080ff xc000ff x00eeee ; set out; else set ter gif animate optimize size xpix,ypix xffffff x000000 xa0a0a0 xff0000 x00c000 x0080ff xc000ff x00eeee; set out ficsortie;
show ter
show output
rotationdynz=rotationz/360.*2.*pi
if(fixe==1) rotationzinc=-tdelta*Omega*sin(theta); else rotationzinc=0 # Pour fixe==2 voir foucault-rot-ellipse.gp car la rotation est plus complexe
debut=1
call "foucault-iter.gp" "Rotationz" rotationzinc split fix # en fait les valeurs des variables sont passées par défaut
set ter X11
set out
replot
# Gnuplot 2.3 rc4 semble moins bien optimser que gifsicle ou Gimp pour réduire sa taille.
# Ici on a fait :
#! gifsicle -b foucault-anim.gif -d150 '#6' -d150 '#7' -d50 '#8'
#! gifsicle -O2 -k8 foucault-anim.gif -o foucault-anim-O2-k8.gif
###! gifsicle -b foucault-rotz.gif -d150 '#6' -d150 '#7' -d50 '#8'
###! gifsicle -O2 -k8 foucault-rotz.gif -o foucault-rotz-O2-k8.gif
#! gifsicle -O2 -k8 foucault-soleil.gif -o foucault-soleil-O2-k8.gif
# Fin
Foucault-iter.gp
Nous avons besoin d'un programe d'itération (Foucault-iter.gp) pour faire plusieurs images:
Gnuplot source
# Foucault-iter.gp
# Version 1.8 du 12 avril 2007
# Dernière version sous http://commons.wikimedia.org/wiki/Image:Foucault-rotz.gif
if(split==1) ficsortie=sprintf("foucault-%s%s/%sfoucault-%s%s-%d.gif",tfixe,ficlang,labpix,tfixe,ficlang,iteration_count);set out ficsortie
print "Fichier Rotationz=$0 rotationzinc=$1 split=$2 ficsortie=",ficsortie
print "1-rotationdynz=",rotationdynz, " deg=", rotationdynz/2./pi*360.
rotationdynz=rotationdynz+$1
rotationdyndegz=rotationdynz/2./pi*360.
rotationdyndegz=rotationdyndegz -int(rotationdyndegz/360.)*360.
if(rotationdyndegz<0) rotationdyndegz=rotationdyndegz+360.
print "2-rotationdynz=",rotationdynz, " deg=", rotationdyndegz
if(fixe==2) set view phi(heure+Omega*tdeb)/2./pi*360.,360.-90.+atan(Y(heure+Omega*tdeb)/X(heure+Omega*tdeb))/2./pi*360.,1.,real(ypix)/real(xpix); else set view ,rotationdyndegz,,
iteration_count=iteration_count+1
if(tdeb/tdelta>sampbase) set samples tdeb*sampbase/tdelta
znonrot(t)=eix(-Omega*sin(theta)*(tdeb-t))*z(t)
print "iteration_count in ", iteration_count," limit_iterations ", limit_iterations, " tdeb ",tdeb," xnonrot(tdeb) ", real(znonrot(tdeb))," ynonrot(tdeb) ",imag(znonrot(tdeb))
if(debut==1 )ti=0.;splot [t=0:tdeb] [:] [-l:l] [-l:l] [0:l] \
spx(t,tdeb),spy(t,tdeb),sph(t,tdeb) not with lines lc rgb 'black', \
spx(t,tdeb),-spy(t,tdeb),sph(t,tdeb) not with lines lc rgb 'black', \
z0+a*cos(t/tdeb*(pi+2*eta)+pi/2.-eta),a*sin(t/tdeb*(pi+2*eta)+pi/2.-eta),h(0) not with lines lc rgb 'brown', \
xcorde(t,tdeb), ycorde(t,tdeb),h(0) not with lines lc rgb 'brown', \
xcorde(t,tdeb),-ycorde(t,tdeb),h(0) not with lines lc rgb 'brown', \
xonde(t,tdeb,ti),yonde(t,tdeb,ti),zonde(t,tdeb,ti) not with lines lt 6;
if(debut==1 )ti=1.*tond;splot [t=0:tdeb] [:] [-l:l] [-l:l] [0:l] \
spx(t,tdeb),spy(t,tdeb),sph(t,tdeb) not with lines lc rgb 'black', \
spx(t,tdeb),-spy(t,tdeb),sph(t,tdeb) not with lines lc rgb 'black', \
z0+a*cos(t/tdeb*(pi+2*eta)+pi/2.-eta),a*sin(t/tdeb*(pi+2*eta)+pi/2.-eta),h(0) not with lines lc rgb 'brown', \
xcorde(t,tdeb), ycorde(t,tdeb),h(0) not with lines lc rgb 'brown', \
xcorde(t,tdeb),-ycorde(t,tdeb),h(0) not with lines lc rgb 'brown', \
xonde(t,tdeb,ti),yonde(t,tdeb,ti),zonde(t,tdeb,ti) not with lines lt 6;
if(debut==1 )ti=2.*tond;splot [t=0:tdeb] [:] [-l:l] [-l:l] [0:l] \
spx(t,tdeb),spy(t,tdeb),sph(t,tdeb) not with lines lc rgb 'black', \
spx(t,tdeb),-spy(t,tdeb),sph(t,tdeb) not with lines lc rgb 'black', \
z0+a*cos(t/tdeb*(pi+2*eta)+pi/2.-eta),a*sin(t/tdeb*(pi+2*eta)+pi/2.-eta),h(0) not with lines lc rgb 'brown', \
xcorde(t,tdeb), ycorde(t,tdeb),h(0) not with lines lc rgb 'brown', \
xcorde(t,tdeb),-ycorde(t,tdeb),h(0) not with lines lc rgb 'brown', \
xonde(t,tdeb,ti),yonde(t,tdeb,ti),zonde(t,tdeb,ti) not with lines lt 6;
if(debut==1 )ti=3.*tond;splot [t=0:tdeb] [:] [-l:l] [-l:l] [0:l] \
spx(t,tdeb),spy(t,tdeb),sph(t,tdeb) not with lines lc rgb 'black', \
spx(t,tdeb),-spy(t,tdeb),sph(t,tdeb) not with lines lc rgb 'black', \
z0+a*cos(t/tdeb*(pi+2*eta)+pi/2.-eta),a*sin(t/tdeb*(pi+2*eta)+pi/2.-eta),h(0) not with lines lc rgb 'brown', \
xcorde(t,tdeb), ycorde(t,tdeb),h(0) not with lines lc rgb 'brown', \
xcorde(t,tdeb),-ycorde(t,tdeb),h(0) not with lines lc rgb 'brown', \
xonde(t,tdeb,ti),yonde(t,tdeb,ti),zonde(t,tdeb,ti) not with lines lt 6;
if(debut==1 )ti=4.*tond;splot [t=0:tdeb] [:] [-l:l] [-l:l] [0:l] \
spx(t,tdeb),spy(t,tdeb),sph(t,tdeb) not with lines lc rgb 'black', \
spx(t,tdeb),-spy(t,tdeb),sph(t,tdeb) not with lines lc rgb 'black', \
z0+a*cos(t/tdeb*(pi+2*eta)+pi/2.-eta),a*sin(t/tdeb*(pi+2*eta)+pi/2.-eta),h(0) not with lines lc rgb 'brown', \
xcorde(t,tdeb), ycorde(t,tdeb),h(0) not with lines lc rgb 'brown', \
xcorde(t,tdeb),-ycorde(t,tdeb),h(0) not with lines lc rgb 'brown', \
xonde(t,tdeb,ti),yonde(t,tdeb,ti),zonde(t,tdeb,ti) not with lines lt 6;
if(debut==1 ) ti=5.*tond;splot [t=0:tdeb] [:] [-l:l] [-l:l] [0:l] \
spx(t,tdeb),spy(t,tdeb),sph(t,tdeb) not with lines lc rgb 'black', \
spx(t,tdeb),-spy(t,tdeb),sph(t,tdeb) not with lines lc rgb 'black', \
z0+a*cos(t/tdeb*(pi+2*eta)+pi/2.-eta),a*sin(t/tdeb*(pi+2*eta)+pi/2.-eta),h(0) not with lines lc rgb 'brown', \
xcorde(t,tdeb), ycorde(t,tdeb),h(0) not with lines lc rgb 'brown', \
xcorde(t,tdeb),-ycorde(t,tdeb),h(0) not with lines lc rgb 'brown', \
xonde(t,tdeb,ti),yonde(t,tdeb,ti),zonde(t,tdeb,ti) not with lines lt 6;
if(debut==1 )ti=6*tond;splot [t=0:tdeb] [:] [-l:l] [-l:l] [0:l] \
spx(t,tdeb),spy(t,tdeb),sph(t,tdeb) not with lines lc rgb 'black', \
spx(t,tdeb),-spy(t,tdeb),sph(t,tdeb) not with lines lc rgb 'black', \
X(heure+Omega*tdeb)/Z(heure+Omega*tdeb)*htig*t/tdeb,Y(heure+Omega*tdeb)/Z(heure+Omega*tdeb)*htig*t/tdeb,0 with line lt -1, \
0.,0., htig*t/tdeb with line lt 7, \
z0+a*cos(t/tdeb*(pi+2*eta)+pi/2.-eta),a*sin(t/tdeb*(pi+2*eta)+pi/2.-eta),h(0) not with lines lc rgb 'brown', \
xcorde(t,tdeb), ycorde(t,tdeb),h(0) not with lines lc rgb 'brown', \
xcorde(t,tdeb),-ycorde(t,tdeb),h(0) not with lines lc rgb 'brown', \
xonde(t,tdeb,ti),yonde(t,tdeb,ti),zonde(t,tdeb,ti) not with lines lt 6;
if(debut==1) replot xcorde(t,tdeb),-ycorde(t,tdeb),((tdeb*0.4<t)&&(t<=tdeb*0.6)?h(t):1/0) not with lines lc rgb 'red' lw 3 ;
if(debut==1) replot xcorde(t,tdeb),-ycorde(t,tdeb),((tdeb*0.3<t)&&(t<=tdeb*0.7)?h(t):1/0) not with lines lc rgb 'red' lw 3, \
xcorde(t,tdeb),-ycorde(t,tdeb),((tdeb*0.4<t)&&(t<=tdeb*0.6)?h(t):1/0) not with lines lc rgb 'yellow' lw 4 ;
debut=0
if (((!limit_iterations) || (iteration_count<=limit_iterations)) && (tdeb <= tfin)) \
print "iteration_count loop ",iteration_count; \
splot [t=0:tdeb] [:] [-l:l] [-l:l] [0:l] \
xcorde(tdeb,tdeb),0., (1.-(xcorde(tdeb,tdeb)-xcorde(t,tdeb))/20.)*h(0) not with lines lc rgb 'brown', \
xcorde(tdeb,tdeb)*(1.-(xcorde(tdeb,tdeb)-xcorde(t,tdeb))/200.),0., (1.-(xcorde(tdeb,tdeb)-xcorde(t,tdeb))/60.)*h(0) not with lines lc rgb 'brown', \
real(z(t)),imag(z(t)),0 not with lines lc rgb 'green', \
real(znonrot(t)),imag(znonrot(t)),((0<=t)&&(t<=tdeb)?h(t):1/0) not with lines lc rgb 'blue', \
px(t,tdeb),py(t,tdeb),((0<=t)&&(t<=tdeb)?ph(t,tdeb):1/0) not with lines lt 6, \
real(z(t)),imag(z(t)),((tdeb-tdelta/2.<t)&&(t<=tdeb)?h(t):1/0) not with lines lc rgb 'red' lw 3, \
spx(t,tdeb),spy(t,tdeb),sph(t,tdeb) not with lines lc rgb 'black', \
spx(t,tdeb),-spy(t,tdeb),sph(t,tdeb) not with lines lc rgb 'black', \
X(heure+Omega*tdeb)/Z(heure+Omega*tdeb)*htig*t/tdeb,Y(heure+Omega*tdeb)/Z(heure+Omega*tdeb)*htig*t/tdeb,0 with line lt -1, \
0.,0., htig*t/tdeb with line lt 7; \
tdeb=tdeb+tdelta; \
print (iteration_count+0.1-0.1)/limit_iterations*100, " pour cent"; \
print "heure = ", (heure+Omega*tdeb)/2./pi*24.+12.," phi(heure+Omega*tdeb)=",phi(heure+Omega*tdeb)/2./pi*360.,360.-90.+atan(Y(heure+Omega*tdeb)/X(heure+Omega*tdeb))/2./pi*360. ;\
reread
#pause mouse any "Any key or button will terminate" ;
Ліцензування
Same licenses than other three images of the gallery. It means Creative Common Share Alike for texts (from GFDL) and images, GPL for program code.
Цей файл ліцензований на умовах ліцензії Creative Commons Attribution-Share Alike 3.0 Unported | ||
| ||
Цей шаблон ліцензування був доданий до файлу в рамках оновлення ліцензії GFDL.http://creativecommons.org/licenses/by-sa/3.0/CC BY-SA 3.0Creative Commons Attribution-Share Alike 3.0truetrue |
Об'єкти, показані на цьому файлі
зображує
image/gif
Історія файлу
Клацніть на дату/час, щоб переглянути, як тоді виглядав файл.
Дата/час | Мініатюра | Розмір об'єкта | Користувач | Коментар | |
---|---|---|---|---|---|
поточний | 18:09, 6 листопада 2010 | 448 × 336 (170 КБ) | Nbrouard | Upload of a new version of File:Foucault-rotz.gif: Image is reduced from 640x480 to 540x405 to fit the new 12.5MP limit with 81 frames to get animated thumbnails: http://commons.wikimedia.org/wiki/Category:Animated_gifs_exceeding_the_12.5MP_limit | |
17:27, 12 квітня 2007 | 640 × 480 (145 КБ) | Nbrouard | Ajout poteau central avec ombre du soleil. Ajout d'une corde pour tendre le cable. On attend la fin des oscillations du cable puis brûle la corde pour libérer le pendule avec une vitesse nulle. Version 1.8 | ||
11:10, 23 березня 2007 | 640 × 480 (130 КБ) | Nbrouard | |||
13:32, 16 березня 2007 | 640 × 480 (212 КБ) | Nbrouard | |||
20:54, 14 березня 2007 | 640 × 480 (98 КБ) | Nbrouard | |||
09:00, 12 березня 2007 | 640 × 480 (210 КБ) | Nbrouard | {{Information |Description= {{fr|Animation d'un pendule de Foucault de 67 mètres fictif laché à une distance de 50,25 mètres (3/4 de sa longueur) à l'est avec une vitesse nulle. La rotation de la Terre est également exagérée et correspond à une r | ||
07:49, 7 березня 2007 | 640 × 480 (53 КБ) | Nbrouard | {{Information |Description= {{fr|Animation d'un pendule de Foucault de 67 mètres fictif laché à une distance de 50,25 mètres (3/4 de sa longueur) à l'est avec une vitesse nulle. La rotation de la Terre est également exagérée et correspond à une r |
Використання файлу
Така сторінка використовує цей файл:
Глобальне використання файлу
Цей файл використовують такі інші вікі:
- Використання в ar.wikipedia.org
- Використання в cs.wikipedia.org
- Використання в en.wikipedia.org
- Використання в fr.wikipedia.org
- Використання в he.wikipedia.org
- Використання в hu.wikipedia.org
- Використання в pl.wikipedia.org
- Використання в sl.wikipedia.org