Оствальдівське визрівання: відмінності між версіями

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку
[перевірена версія][перевірена версія]
Вилучено вміст Додано вміст
Немає опису редагування
Немає опису редагування
Рядок 13: Рядок 13:
| accessdate = 2007-11-13
| accessdate = 2007-11-13
| isbn = 0-8247-0759-1
| isbn = 0-8247-0759-1
| page = 4230 }}</ref>.
| page = 4230 }}</ref>.

==Механізм==
Процес відбувається спонтанно і є термодинамічно зумовленим, оскільки великі частинки енергетично вигідніші, ніж малі<ref name="GandC">{{cite book
| last = Ratke
| first = Lorenz
|author2=Voorhees, Peter W.
| title = Growth and Coarsening: Ostwald Ripening in Material Processing
| publisher = Springer
| year = 2002
| url = https://books.google.com/books?id=baKRnEuSBXkC&dq=ostwald+ripening&printsec=frontcover
| pages = 117–118
| isbn = 3-540-42563-2 }}</ref>. Це випливає з того, що на поверхні молекули втримуються слабше, ніж в об'ємі. Наприклад у кубічному кристалі усі внутрішні атоми мають 6 сусідів, і їхнє положення стабільне, але атоми на поверхні мають тільки максимум 5 сусідів, що збільшує їхню енергію.
Великі частинки енергетично вигідніше, тому що , продовжуючи приклад, в них більше атомів мають 6 сусідів і менша частина атомів перебуває на поверхні.


<! ---

As the [[Thermodynamic system|system]] tries to lower its overall energy, molecules on the surface of a small particle (energetically unfavorable, with only 3 or 4 or 5 bonded neighbors) will tend to detach from the particle, as per the [[Kelvin equation]], and diffuse into the solution. When all small particles do this, it increases the concentration of free molecules in solution. When the free molecules in solution are [[supersaturation|supersaturated]], the free molecules have a tendency to [[condensation|condense]] on the surface of larger particles.<ref name="GandC" /> Therefore, all smaller particles shrink, while larger particles grow, and overall the average size will increase. As time tends to infinity, the entire population of particles becomes one large spherical particle to minimize the total surface area.

The history of research progress in quantitatively modeling Ostwald ripening is long, with many derivations.<ref>{{cite journal |author=Baldan, A. |year=2002 |title=Review Progress in Ostwald ripening theories and their applications to nickel-base superalloys Part I: Ostwald ripening theories|doi=10.1023/A:1015388912729 |volume=37 |issue=11 |journal=Journal of Materials Science |pages=2171–2202}}</ref> In 1958, Lifshitz and Slyozov<ref>{{cite journal |author1=Lifshitz, I.M. |author2=Slyozov, V.V. |title=The Kinetics of Precipitation from Supersaturated Solid Solutions |journal=Journal of Physics and Chemistry of Solids |volume=19 |issue=1–2 |pages=35–50 |year=1961|bibcode = 1961JPCS...19...35L |doi = 10.1016/0022-3697(61)90054-3 }}</ref> performed a mathematical investigation of Ostwald ripening in the case where [[diffusion]] of material is the slowest process. They began by stating how a single particle grows in a solution. This equation describes where the boundary is between small, shrinking particles and large, growing particles. They finally conclude that the average radius of the particles ⟨R⟩, grows as follows:
:<math>\langle R \rangle ^3 - \langle R \rangle _0 ^3 = \frac {8 \gamma c_{\infty}v^2D} {9R_g T} t </math>
where
{|
|-
| align = "right" | <math> \langle R \rangle </math> || = || average radius of all the particles
|-
| align = "right" | <math> \gamma </math> || = || particle [[surface tension]] or [[surface energy]]
|-
| align = "right" | <math> c_{\infty} </math> || = || [[solubility]] of the particle material
|-
| align = "right" | <math> v </math> || = || [[molar volume]] of the particle material
|-
| align = "right" | <math> D </math> || = || [[mass diffusivity|diffusion coefficient]] of the particle material
|-
| align = "right" | <math> R_g </math> || = || [[gas constant|ideal gas constant]]
|-
| align = "right" | <math> T </math> || = || [[Thermodynamic temperature|absolute temperature]] and
|-
| align = "right" | <math> t </math> || = ||time.
|}

Note that the quantity {{math|⟨R⟩<sup>3</sup>}} is different from {{math|⟨R<sup>3</sup>⟩}}, and only the latter one can be used to calculate average volume, and that the statement that ⟨R⟩ goes as {{math|t<sup>1/3</sup>}} relies on {{math|⟨R⟩<sub>0</sub>}} being zero; but because [[nucleation]] is a separate process from growth, this places {{math|⟨R⟩<sub>0</sub>}} outside the bounds of validity of the equation. In contexts where the actual value of {{math|⟨R⟩<sub>0</sub>}} is irrelevant, an approach that respects the meanings of all terms is to take the time derivative of the equation to eliminate {{math|⟨R⟩<sub>0</sub>}} and {{math|t}}. Another such approach is to change the {{math|⟨R⟩<sub>0</sub>}} to {{math|⟨R⟩<sub>i</sub>}} with the initial time {{math|i}} having a positive value.{{Citation needed|date=January 2015}}

Also contained in the Lifshitz and Slyozov derivation is an equation for the size [[distribution function]] {{math|f(R, t)}} of particles. For convenience, the radius of particles is divided by the average radius to form a new variable, ρ = {{math|R(⟨R⟩)<sup>−1</sup>}}.

:<math> f(R,t) = \frac {4}{9} \rho^2 \left(\frac {3}{3+\rho}\right)^\frac {7}{3} \left(\frac {1.5} {1.5 - \rho}\right)^\frac {11}{3} \exp \left(- \frac {1.5}{1.5 - \rho}\right), \rho < 1.5 </math>

Three years after that Lifshitz and Slyozov published their findings (in Russian, 1958), Carl Wagner performed his own mathematical investigation of Ostwald ripening,<ref>{{cite journal |author=Wagner, C. |title= Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung)|trans_title=Theory of the aging of precipitates by dissolution-reprecipitation (Ostwald ripening) |doi=10.1002/bbpc.19610650704|url=http://onlinelibrary.wiley.com/doi/10.1002/bbpc.19610650704/abstract|journal=Zeitschrift für Elektrochemie |volume=65 |issue=7 |pages=581–591 |year=1961|doi-broken-date= 2017-03-07}}</ref> examining both systems where [[diffusion]] was slow and also where attachment and detachment at the particle surface was slow. Although his calculations and approach were different, Wagner came to the same conclusions as Lifshitz and Slyozov for slow-diffusion systems. This duplicate derivation went unnoticed for years because the two scientific papers were published on opposite sides of the [[Iron Curtain]] in 1961.{{Citation needed|date=September 2011}} It was not until 1975 that Kahlweit addressed the fact that the theories were identical<ref>{{cite journal |author=Kahlweit, M. |title = Ostwald Ripening of Precipitates | journal=Advances in Colloid and Interface Science |volume=5 |issue=1 |pages=1–35 |year=1975 |doi=10.1016/0001-8686(75)85001-9}}</ref> and combined them into the Lifshitz-Slyozov-Wagner or LSW theory of Ostwald ripening. Many experiments and [[simulations]] have shown LSW theory to be robust and accurate. Even some systems that undergo [[spinodal decomposition]] have been shown to [[quantitatively]] obey LSW theory after initial stages of growth.<ref>{{cite journal |author1=Vladimirova, N. |author2=Malagoli, A. |author3=Mauri, R. |title=Diffusion-driven phase separation of deeply quenched mixtures |journal=Physical Review E |volume=58 |issue=6 |pages=7691–7699 |year=1998|bibcode = 1998PhRvE..58.7691V |doi = 10.1103/PhysRevE.58.7691 }}</ref>

Wagner derived that when attachment and detachment of molecules is slower than diffusion, then the growth rate becomes
:<math> \langle R \rangle ^2 = \frac {64 \gamma c_{\infty} v^2 k_s} {81 R_g T} t </math>
where {{math|k<sub>s</sub>}} is the [[reaction rate constant]] of attachment with [[Units of measurement|units]] of length per time. Since the average radius is usually something that can be measured in experiments, it is fairly easy to tell if a system is obeying the slow-diffusion equation or the slow-attachment equation. If the experimental data obeys neither equation, then it is likely that another mechanism is taking place and Ostwald ripening is not occurring.

Although LSW theory and Ostwald ripening were intended for solids ripening in a fluid, Ostwald ripening is also observed in liquid-liquid systems, for example, in an oil-in-water [[emulsion polymerization]].<ref name="Hubbard 2004 4230"/> In this case, Ostwald ripening causes the [[diffusion]] of [[monomer]]s (i.e. individual molecules or atoms) from smaller droplets to larger droplets due to greater solubility of the single monomer molecules in the larger monomer droplets. The rate of this diffusion process is linked to the solubility of the monomer in the continuous (water) phase of the emulsion. This can lead to the destabilization of emulsions (for example, by creaming and sedimentation).<ref>{{cite book
| last = Branen
| first = Alfred Larry
| title = Food Additives
| publisher = CRC Press
| year = 2002
| url = https://books.google.com/books?id=K8urEPJvXNsC&pg=PA724&lpg=PA724&dq=ostwald+ripening+destabilization+emulsion
| isbn = 0-8247-9343-9
| page = 724 }}</ref>

-->


== Виноски ==
== Виноски ==

Версія за 10:42, 13 травня 2017

Оствальдівське визрівання наночастинок паладію, розчинених у формальдегіді через 6 (a), 24 (b), 48 (c) та 72 години (d). Маленькі частинки пожираються більшими[1].
Ріст бульбашок у рідкій піні, зумовлений Оствальдівським визріванням[2].

Оствадьдівське визрівання — явище зміни з часом неоднорідної структури твердих та колоїдних розчинів: розчинення малих кристалів та ріст виликих[3].

Розчинення маленьких кристалів чи колоїдних частинок і відкладення розчиного матеріалу на поверхні більших кристалів чи частинок уперше описав 1896 року Вільгельм Оствальд[4][5]. Оствальдове визрівання зазвичай спостерігається в емульсіях типу вода в олії, тоді як в емульсіях типу олія у воді спостерігається флокуляція [6].

Механізм

Процес відбувається спонтанно і є термодинамічно зумовленим, оскільки великі частинки енергетично вигідніші, ніж малі[7]. Це випливає з того, що на поверхні молекули втримуються слабше, ніж в об'ємі. Наприклад у кубічному кристалі усі внутрішні атоми мають 6 сусідів, і їхнє положення стабільне, але атоми на поверхні мають тільки максимум 5 сусідів, що збільшує їхню енергію. Великі частинки енергетично вигідніше, тому що , продовжуючи приклад, в них більше атомів мають 6 сусідів і менша частина атомів перебуває на поверхні.


<! ---

As the system tries to lower its overall energy, molecules on the surface of a small particle (energetically unfavorable, with only 3 or 4 or 5 bonded neighbors) will tend to detach from the particle, as per the Kelvin equation, and diffuse into the solution. When all small particles do this, it increases the concentration of free molecules in solution. When the free molecules in solution are supersaturated, the free molecules have a tendency to condense on the surface of larger particles.[7] Therefore, all smaller particles shrink, while larger particles grow, and overall the average size will increase.  As time tends to infinity, the entire population of particles becomes one large spherical particle to minimize the total surface area.

The history of research progress in quantitatively modeling Ostwald ripening is long, with many derivations.[8] In 1958, Lifshitz and Slyozov[9] performed a mathematical investigation of Ostwald ripening in the case where diffusion of material is the slowest process. They began by stating how a single particle grows in a solution. This equation describes where the boundary is between small, shrinking particles and large, growing particles. They finally conclude that the average radius of the particles ⟨R⟩, grows as follows:

where

= average radius of all the particles
= particle surface tension or surface energy
= solubility of the particle material
= molar volume of the particle material
= diffusion coefficient of the particle material
= ideal gas constant
= absolute temperature and
= time.

Note that the quantity ⟨R⟩3 is different from ⟨R3, and only the latter one can be used to calculate average volume, and that the statement that ⟨R⟩ goes as t1/3 relies on ⟨R⟩0 being zero; but because nucleation is a separate process from growth, this places ⟨R⟩0 outside the bounds of validity of the equation. In contexts where the actual value of ⟨R⟩0 is irrelevant, an approach that respects the meanings of all terms is to take the time derivative of the equation to eliminate ⟨R⟩0 and t. Another such approach is to change the ⟨R⟩0 to ⟨R⟩i with the initial time i having a positive value.[джерело?]

Also contained in the Lifshitz and Slyozov derivation is an equation for the size distribution function f(R, t) of particles. For convenience, the radius of particles is divided by the average radius to form a new variable, ρ = R(⟨R⟩)−1.

Three years after that Lifshitz and Slyozov published their findings (in Russian, 1958), Carl Wagner performed his own mathematical investigation of Ostwald ripening,[10] examining both systems where diffusion was slow and also where attachment and detachment at the particle surface was slow. Although his calculations and approach were different, Wagner came to the same conclusions as Lifshitz and Slyozov for slow-diffusion systems. This duplicate derivation went unnoticed for years because the two scientific papers were published on opposite sides of the Iron Curtain in 1961.[джерело?] It was not until 1975 that Kahlweit addressed the fact that the theories were identical[11] and combined them into the Lifshitz-Slyozov-Wagner or LSW theory of Ostwald ripening. Many experiments and simulations have shown LSW theory to be robust and accurate. Even some systems that undergo spinodal decomposition have been shown to quantitatively obey LSW theory after initial stages of growth.[12]

Wagner derived that when attachment and detachment of molecules is slower than diffusion, then the growth rate becomes

where ks is the reaction rate constant of attachment with units of length per time. Since the average radius is usually something that can be measured in experiments, it is fairly easy to tell if a system is obeying the slow-diffusion equation or the slow-attachment equation. If the experimental data obeys neither equation, then it is likely that another mechanism is taking place and Ostwald ripening is not occurring.

Although LSW theory and Ostwald ripening were intended for solids ripening in a fluid, Ostwald ripening is also observed in liquid-liquid systems, for example, in an oil-in-water emulsion polymerization.[6] In this case, Ostwald ripening causes the diffusion of monomers (i.e. individual molecules or atoms) from smaller droplets to larger droplets due to greater solubility of the single monomer molecules in the larger monomer droplets. The rate of this diffusion process is linked to the solubility of the monomer in the continuous (water) phase of the emulsion. This can lead to the destabilization of emulsions (for example, by creaming and sedimentation).[13]

-->

Виноски

  1. Zhang, Zhaorui; Wang, Zhenni; He, Shengnan; Wang, Chaoqi; Jin, Mingshang; Yin, Yadong (2015). Redox reaction induced Ostwald ripening for size- and shape-focusing of palladium nanocrystals. Chem. Sci. 6 (9): 5197. doi:10.1039/C5SC01787D.
  2. Huang, Zhandong; Su, Meng; Yang, Qiang; Li, Zheng; Chen, Shuoran; Li, Yifan; Zhou, Xue; Li, Fengyu; Song, Yanlin (2017). A general patterning approach by manipulating the evolution of two-dimensional liquid foams. Nature Communications. 8: 14110. doi:10.1038/ncomms14110. PMC 5290267. PMID 28134337.
  3. IUPAC, Compendium of Chemical Terminology, 2nd ed. (the "Gold Book") (1997). Online corrected version: (2006–) "Ostwald ripening
  4. Ostwald, W. (1896). Lehrbuch der Allgemeinen Chemie, vol. 2, part 1. Leipzig, Germany.
  5. Ostwald, W. (1897). Studien über die Bildung und Umwandlung fester Körper [Studies on the formation and transformation of solid bodies] (PDF). Zeitschrift für physikalische Chemie. 22: 289—330.
  6. а б Hubbard, Arthur T. (2004). Encyclopedia of Surface and Colloid Science. CRC Press. с. 4230. ISBN 0-8247-0759-1. Процитовано 13 листопада 2007.
  7. а б Ratke, Lorenz; Voorhees, Peter W. (2002). Growth and Coarsening: Ostwald Ripening in Material Processing. Springer. с. 117—118. ISBN 3-540-42563-2.
  8. Baldan, A. (2002). Review Progress in Ostwald ripening theories and their applications to nickel-base superalloys Part I: Ostwald ripening theories. Journal of Materials Science. 37 (11): 2171—2202. doi:10.1023/A:1015388912729.
  9. Lifshitz, I.M.; Slyozov, V.V. (1961). The Kinetics of Precipitation from Supersaturated Solid Solutions. Journal of Physics and Chemistry of Solids. 19 (1–2): 35—50. Bibcode:1961JPCS...19...35L. doi:10.1016/0022-3697(61)90054-3.
  10. Wagner, C. (1961). Theorie der Alterung von Niederschlägen durch Umlösen (Ostwald-Reifung) [Theory of the aging of precipitates by dissolution-reprecipitation (Ostwald ripening)]. Zeitschrift für Elektrochemie. 65 (7): 581—591. doi:10.1002/bbpc.19610650704 (неактивний 2017-03-07).{{cite journal}}: Обслуговування CS1: Сторінки із неактивним DOI станом на березень 2017 (посилання)
  11. Kahlweit, M. (1975). Ostwald Ripening of Precipitates. Advances in Colloid and Interface Science. 5 (1): 1—35. doi:10.1016/0001-8686(75)85001-9.
  12. Vladimirova, N.; Malagoli, A.; Mauri, R. (1998). Diffusion-driven phase separation of deeply quenched mixtures. Physical Review E. 58 (6): 7691—7699. Bibcode:1998PhRvE..58.7691V. doi:10.1103/PhysRevE.58.7691.
  13. Branen, Alfred Larry (2002). Food Additives. CRC Press. с. 724. ISBN 0-8247-9343-9.