Ренормгрупа: відмінності між версіями

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку
[перевірена версія][перевірена версія]
Вилучено вміст Додано вміст
Мітки: Редагування з мобільного пристрою Редагування через мобільну версію Розширене редагування з мобільного
Немає опису редагування
Мітки: Редагування з мобільного пристрою Редагування через мобільну версію Розширене редагування з мобільного
Рядок 6: Рядок 6:
Компоненти або фундаментальні змінні можуть бути атомами, елементарними частинками, атомарними спінами тощо. Параметри типово описують взаємодію між компонентами. Це можуть бути характеристики зв'язку, що задають сили, або масові параметри, або власне самі масові параметри. Може статися, що компоненти складають зі схожих між собою дрібніших.
Компоненти або фундаментальні змінні можуть бути атомами, елементарними частинками, атомарними спінами тощо. Параметри типово описують взаємодію між компонентами. Це можуть бути характеристики зв'язку, що задають сили, або масові параметри, або власне самі масові параметри. Може статися, що компоненти складають зі схожих між собою дрібніших.


Наприклад, у [[квантова електродинаміка|квантовій електродинаміці]] [[електрон]], якщо приглянутися, виглядає так, наче він складається з електрона, [[ позитрон]]а і [[фотон]]а. Звичний електрон наче одягнений у шубу з інших частинок. Електричний заряд та маса голого електрона дещо відрізняються, і ця різниця визначається з рівнянь ренормгрупи.
Наприклад, у [[квантова електродинаміка|квантовій електродинаміці]] [[електрон]], якщо приглянутися, виглядає так, наче він складається з електрона, [[ позитрон]]а і [[фотон]]а. Звичний електрон наче одягнений у шубу з інших частинок. Електричний заряд та маса голого електрона дещо відрізняються, і ця різниця визначається з рівнянь ренормгрупи.
<!--
==History==<!--'History of renormalization group theory' redirects here-->
The idea of scale transformations and scale invariance is old in physics: Scaling arguments were commonplace for the [[Pythagoreanism|Pythagorean school]], [[Euclid]], and up to [[Galileo]].<ref>{{cite web |url=http://www.av8n.com/physics/scaling.htm |title=Introduction to Scaling Laws |website=av8n.com}}</ref> They became popular again at the end of the 19th&nbsp;century, perhaps the first example being the idea of enhanced [[viscosity]] of [[Osborne Reynolds]], as a way to explain turbulence.

The renormalization group was initially devised in particle physics, but nowadays its applications extend to [[solid-state physics]], [[fluid mechanics]], [[physical cosmology]], and even [[nanotechnology]]. An early article<ref>{{cite journal |author1-link=Ernst Stueckelberg |last=Stueckelberg |first=E.C.G. |author2-link=André Petermann |first2=A. |last2=Petermann |year=1953 |url=https://www.e-periodica.ch/cntmng?pid=hpa-001:1953:26::894 |title=La renormalisation des constants dans la théorie de quanta |journal=Helv. Phys. Acta |volume=26 |pages=499–520 |language=FR}}</ref> by [[Ernst Stueckelberg]] and [[André Petermann]] in 1953 anticipates the idea in [[quantum field theory]]. Stueckelberg and Petermann opened the field conceptually. They noted that [[renormalization]] exhibits a group of transformations which transfer quantities from the bare terms to the counter terms. They introduced a function ''h''(''e'') in [[Quantum electrodynamics| quantum electrodynamics (QED)]], which is now called the [[Beta-function#Quantum electrodynamics|beta function]] (see below).

===Beginnings===
[[Murray Gell-Mann]] and [[Francis E. Low]] restricted the idea to scale transformations in QED in 1954,<ref>{{cite journal |last=Gell-Mann |first=M. |authorlink=Murray Gell-Mann |author2=Low, F. E. |authorlink2=Francis E. Low |year=1954 |title=Quantum Electrodynamics at Small Distances |journal=Physical Review |volume=95 |issue=5 |pages=1300–1312 |doi=10.1103/PhysRev.95.1300 |bibcode=1954PhRv...95.1300G |url=https://authors.library.caltech.edu/60469/1/PhysRev.95.1300.pdf}}</ref> which are the most physically significant, and focused on asymptotic forms of the photon propagator at high energies. They determined the variation of the electromagnetic coupling in QED, by appreciating the simplicity of the scaling structure of that theory. They thus discovered that the coupling parameter ''g''(''μ'') at the energy scale ''μ'' is effectively given by the group equation

{{Equation box 1
|indent =:
|equation = <math>g(\mu)=G^{-1}\left(\left(\frac{\mu}{M}\right)^d G(g(M))\right)</math>,
|cellpadding= 6
|border
|border colour = #0073CF
|bgcolor=#F9FFF7}}
for some function ''G'' (unspecified—nowadays called [[Franz Wegner|Wegner]]'s scaling function) and a constant ''d'', in terms of the coupling ''g(M)'' at a reference scale ''M''.

Gell-Mann and Low realized in these results that the effective scale can be arbitrarily taken as ''μ'', and can vary to define the theory at any other scale:

{{Equation box 1
|indent =:
|equation = <math>g(\kappa)=G^{-1}\left(\left(\frac{\kappa}{\mu}\right)^d G(g(\mu))\right) = G^{-1}\left(\left(\frac{\kappa}{M}\right)^d G(g(M))\right)</math>.
|cellpadding= 6
|border
|border colour = #0073CF
|bgcolor=#F9FFF7}}
The gist of the RG is this group property: as the scale ''μ'' varies, the theory presents a self-similar replica of itself, and any scale can be accessed similarly from any other scale, by group action, a formal transitive conjugacy of couplings<ref>{{cite journal |last1=Curtright |first1=T.L. |authorlink1=Thomas Curtright |last2=Zachos |first2=C.K. |date=March 2011 |title=Renormalization Group Functional Equations |journal=Physical Review D |volume=83 |issue=6 |pages=065019 |doi=10.1103/PhysRevD.83.065019 |bibcode=2011PhRvD..83f5019C |arxiv=1010.5174}}</ref> in the mathematical sense ([[Schröder's equation]]).

On the basis of this (finite) group equation and its scaling property, Gell-Mann and Low could then focus on infinitesimal transformations, and invented a computational method based on a mathematical flow function {{math|''ψ''(''g'') {{=}} ''G'' ''d''/(∂''G''/∂''g'')}} of the coupling parameter ''g'', which they introduced. Like the function ''h''(''e'') of Stueckelberg and Petermann, their function determines the differential change of the coupling ''g''(''μ'') with respect to a small change in energy scale ''μ'' through a differential equation, the ''renormalization group equation'':

{{Equation box 1
|indent =:
|equation = <math> \displaystyle\frac{\partial g}{\partial \ln\mu} = \psi(g) = \beta(g) </math>.
|cellpadding= 6
|border
|border colour = #0073CF
|bgcolor=#F9FFF7}}

The modern name is also indicated, the [[Beta function (physics)|beta function]], introduced by [[Curtis Callan|C. Callan]] and [[Kurt Symanzik|K. Symanzik]] in 1970.<ref name=CS/> Since it is a mere function of ''g'', integration in ''g'' of a perturbative estimate of it permits specification of the renormalization trajectory of the coupling, that is, its variation with energy, effectively the function ''G'' in this perturbative approximation. The renormalization group prediction (cf. Stueckelberg–Petermann and Gell-Mann–Low works) was confirmed 40&nbsp;years later at the [[LEP]] accelerator experiments: the [[Fine-structure constant|fine structure "constant"]] of QED was measured to be about {{frac|1|127}} at energies close to 200&nbsp;GeV, as opposed to the standard low-energy physics value of {{frac|1|137}}&nbsp;.{{efn|Early applications to [[quantum electrodynamics]] are discussed in the influential 1959 book ''The Theory of Quantized Fields'' by [[Nikolay Bogolyubov]] and [[Dmitry Shirkov]].<ref>{{cite book |author1-link=Nikolay Bogolyubov |first1=N.N. |last1=Bogoliubov |author2-link=Dmitry Shirkov |first2=D.V. |last2=Shirkov |year=1959 |title=The Theory of Quantized Fields |place=New York, NY |publisher=Interscience}}</ref>}}

=== Deeper understanding ===
The renormalization group emerges from the [[renormalization]] of the quantum field variables, which normally has to address the problem of infinities in a quantum field theory.{{efn|Although note that the RG exists independently of the infinities.}} This problem of systematically handling the infinities of quantum field theory to obtain finite physical quantities was solved for QED by [[Richard Feynman]], [[Julian Schwinger]] and [[Shin'ichirō Tomonaga]], who received the 1965 Nobel prize for these contributions. They effectively devised the theory of mass and charge renormalization, in which the infinity in the momentum scale is [[Cutoff (physics)|cut off]] by an ultra-large [[Regularization (physics)|regulator]], Λ.{{efn|The regulator parameter Λ could ultimately be taken to be infinite – infinities reflect the pileup of contributions from an infinity of degrees of freedom at infinitely high energy scales.}}

The dependence of physical quantities, such as the electric charge or electron mass, on the scale Λ is hidden, effectively swapped for the longer-distance scales at which the physical quantities are measured, and, as a result, all observable quantities end up being finite instead, even for an infinite Λ. Gell-Mann and Low thus realized in these results that, infinitesimally, while a tiny change in '' g'' is provided by the above RG equation given ψ(''g''), the self-similarity is expressed by the fact that ψ(''g'') depends explicitly only upon the parameter(s) of the theory, and not upon the scale ''μ''. Consequently, the above renormalization group equation may be solved for (''G'' and thus) ''g''(''μ'').

A deeper understanding of the physical meaning and generalization of the renormalization process, which goes beyond the dilation group of conventional ''renormalizable'' theories, considers methods where widely different scales of lengths appear simultaneously. It came from [[condensed matter physics]]: [[Leo P. Kadanoff]]'s paper in 1966 proposed the "block-spin" renormalization group.<ref name=Kadanoff>{{cite journal |author-link=Leo P. Kadanoff |first=Leo P. |last=Kadanoff |year=1966 |title=Scaling laws for Ising models near <math>T_c</math> |journal=Physics Physique Fizika |volume=2 |page=263|doi=10.1103/PhysicsPhysiqueFizika.2.263 }}</ref> The "blocking idea" is a way to define the components of the theory at large distances as aggregates of components at shorter distances.

This approach covered the conceptual point and was given full computational substance in the extensive important contributions of [[Kenneth G. Wilson|Kenneth Wilson]]. The power of Wilson's ideas was demonstrated by a constructive iterative renormalization solution of a long-standing problem, the [[Kondo effect|Kondo problem]], in 1975,<ref>{{cite journal |author-link=Kenneth G. Wilson |first=K.G. |last=Wilson |year=1975 |title=The renormalization group: Critical phenomena and the Kondo problem |journal=Rev. Mod. Phys. |volume=47 |issue=4 |page=773|doi=10.1103/RevModPhys.47.773 |bibcode=1975RvMP...47..773W }}</ref> as well as the preceding seminal developments of his new method in the theory of second-order phase transitions and [[critical phenomena]] in 1971.<ref>{{Cite journal |last=Wilson |first=K.G. |author-link=Kenneth G. Wilson |title=Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture |doi=10.1103/PhysRevB.4.3174 |journal=Physical Review B |volume=4 |issue=9 |pages=3174–3183 |year=1971 |bibcode=1971PhRvB...4.3174W}}</ref><ref>{{Cite journal |last=Wilson |first=K. |author-link=Kenneth G. Wilson |title=Renormalization group and critical phenomena. II. Phase-space cell analysis of critical behavior |doi=10.1103/PhysRevB.4.3184 |journal=Physical Review B |volume=4 |issue=9 |pages=3184–3205 |year=1971 |bibcode=1971PhRvB...4.3184W}}</ref><ref>{{cite journal |last1=Wilson |first1=K.G. |author1-link=Kenneth G. Wilson |last2=Fisher |first2=M. |year=1972 |title=Critical exponents in 3.99 dimensions |journal=Physical Review Letters |volume=28 |issue=4 |page=240 |doi=10.1103/physrevlett.28.240 |bibcode=1972PhRvL..28..240W }}</ref> He was awarded the Nobel prize for these decisive contributions in 1982.<ref>{{cite web |url=https://www.nobelprize.org/uploads/2018/06/wilson-lecture-2.pdf |title=Wilson's Nobel Prize address |website=NobelPrize.org |first=Kenneth G. |last=Wilson |author-link=Kenneth G. Wilson}}</ref>

===Reformulation===
Meanwhile, the RG in particle physics had been reformulated in more practical terms by Callan and Symanzik in 1970.<ref name=CS>{{Cite journal
|last=Callan |first=C.G. |title=Broken scale invariance in scalar field theory |doi=10.1103/PhysRevD.2.1541 |journal=Physical Review D |volume=2 |issue=8 |pages=1541–1547 |year=1970 |bibcode=1970PhRvD...2.1541C}}</ref><ref>{{Cite journal |last=Symanzik |first=K. |title=Small distance behaviour in field theory and power counting |doi=10.1007/BF01649434 |journal=Communications in Mathematical Physics |volume=18 |issue=3 |pages=227–246 |year=1970 |bibcode=1970CMaPh..18..227S}}</ref> The above beta function, which describes the "running of the coupling" parameter with scale, was also found to amount to the "canonical trace anomaly", which represents the quantum-mechanical breaking of scale (dilation) symmetry in a field theory. (Remarkably, quantum mechanics itself can induce mass through the trace anomaly and the running coupling.) Applications of the RG to particle physics exploded in number in the 1970s with the establishment of the [[Standard Model]].

In 1973,<ref>{{cite journal |first1=D.J. |last1=Gross |first2=F. |last2=Wilczek |year=1973 |title=Ultraviolet behavior of non-Abelian gauge theories |journal=[[Physical Review Letters]] |volume=30 |issue= 26 |pages=1343–1346 |bibcode=1973PhRvL..30.1343G |doi=10.1103/PhysRevLett.30.1343}}</ref><ref>{{cite journal |first=H.D. |last=Politzer |year=1973 |title=Reliable perturbative results for strong interactions |journal=[[Physical Review Letters]] |volume=30 |issue=26 |pages=1346–1349 |bibcode=1973PhRvL..30.1346P |doi=10.1103/PhysRevLett.30.1346}}</ref> it was discovered that a theory of interacting colored quarks, called [[quantum chromodynamics]], had a negative beta function. This means that an initial high-energy value of the coupling will eventuate a special value of ''μ'' at which the coupling blows up (diverges). This special value is the [[Strong coupling constant#QCD and asymptotic freedom|scale of the strong interactions]], [[Coupling constant#QCD scale|''μ'' = Λ<sub>QCD</sub>]] and occurs at about 200&nbsp;MeV. Conversely, the coupling becomes weak at very high energies ([[asymptotic freedom]]), and the quarks become observable as point-like particles, in [[deep inelastic scattering]], as anticipated by Feynman-Bjorken scaling. QCD was thereby established as the quantum field theory controlling the strong interactions of particles.

Momentum space RG also became a highly developed tool in solid state physics, but its success was hindered by the extensive use of perturbation theory, which prevented the theory from reaching success in strongly correlated systems. In order to study these strongly correlated systems, [[Calculus of variations|variational]] approaches are a better alternative.

=== Conformal symmetry ===
The conformal symmetry is associated with the vanishing of the beta function. This can occur naturally if a coupling constant is attracted, by running, toward a ''fixed point'' at which ''β''(''g'') = 0. In QCD, the fixed point occurs at short distances where ''g'' → 0 and is called a ([[Quantum triviality|trivial]]) [[ultraviolet fixed point]]. For heavy quarks, such as the [[top quark]], the coupling to the mass-giving [[Higgs boson]] runs toward a fixed non-zero (non-trivial) [[infrared fixed point]], first predicted by Pendleton and Ross (1981),<ref>{{cite journal |first1=Brian |last1=Pendleton |first2=Graham |last2=Ross |title=Mass and mixing angle predictions from infrared fixed points |journal=Physics Letters B |volume=98 |issue=4 |year=1981 |pages=291–294 |doi=10.1016/0370-2693(81)90017-4
|bibcode=1981PhLB...98..291P }}</ref> and [[C. T. Hill]].<ref>{{cite journal |first=Christopher T. |last=Hill |author-link=C. T. Hill |title=Quark and lepton masses from renormalization group fixed points |journal=Physical Review D |volume=24 |issue=3 |year=1981 |pages=691–703 |doi=10.1103/PhysRevD.24.691|bibcode=1981PhRvD..24..691H }}</ref>
The top quark Yukawa coupling lies slightly below the infrared fixed point of the Standard Model suggesting the possibility of additional new physics, such as sequential heavy Higgs bosons.

In [[string theory]] conformal invariance of the string world-sheet is a fundamental symmetry: ''β'' = 0 is a requirement. Here, ''β'' is a function of the geometry of the space-time in which the string moves. This determines the space-time dimensionality of the string theory and enforces Einstein's equations of [[general relativity]] on the geometry. The RG is of fundamental importance to string theory and theories of [[grand unification]].

It is also the modern key idea underlying [[critical phenomena]] in condensed matter physics.<ref>{{Cite journal |last=Shankar |first=R. |doi=10.1103/RevModPhys.66.129 |title=Renormalization-group approach to interacting fermions |journal=Reviews of Modern Physics |volume=66 |issue=1 |pages=129–192 |year=1994 |arxiv=cond-mat/9307009 |bibcode=1994RvMP...66..129S}} (For nonsubscribers see {{cite journal |title= Renormalization-group approach to interacting fermions|arxiv = cond-mat/9307009|doi = 10.1103/RevModPhys.66.129|last = Shankar|first = R. |journal = Reviews of Modern Physics|year = 1993|volume = 66|pages = 129–192}}.)</ref> Indeed, the RG has become one of the most important tools of modern physics.<ref>{{cite journal |first1=L.Ts. |last1=Adzhemyan |first2=T.L. |last2=Kim |first3=M.V. |last3=Kompaniets |first4=V.K. |last4=Sazonov |title=Renormalization group in the infinite-dimensional turbulence: determination of the RG-functions without renormalization constants |journal=Nanosystems: Physics, Chemistry, Mathematics |date=August 2015 |volume=6 |issue=4 |page=461|doi=10.17586/2220-8054-2015-6-4-461-469 }}</ref> It is often used in combination with the [[Monte Carlo method]].<ref name="CallawayPetronzio1984">{{cite journal |last1=Callaway |first1=David J.E. |last2=Petronzio |first2=Roberto |title=Determination of critical points and flow diagrams by Monte Carlo renormalization group methods |journal=Physics Letters B |volume=139 |issue=3 |year=1984 |pages=189–194 |issn=0370-2693 |doi=10.1016/0370-2693(84)91242-5 |bibcode=1984PhLB..139..189C |url=http://cds.cern.ch/record/149868}}</ref>
--->


== Примітки ==
== Примітки ==

Версія за 09:43, 30 березня 2020

Ренормалізаційна група або стисло ренормгрупа — апарат теоретичної фізики, що дозволяє систематичне дослідження змін у фізичній системі при зміні масштабу, тобто при масштабних перетвореннях. У фізиці елементарних частинок це стосується зміни у відповідних законах взаємодії на масштабі енергій, на якому відбуваються модифікації фізичних процесів.

Поняття ренормгупи тісно зв'язане з поняттями масштабної інваріантності та конформаційної інваріантності, симетрій, коли система виглядає однаковою на кожному з масштабів (самоподібності)[a].

Зміна масштабу аналогічна розглядання системи в мікроскоп зі змінною роздільною здатністю. У так званих перенормовних теоріях система на певному масштабі загалом виглядає так, наче вона складається з подібних між собою своїх копій дрібнішого масштабу, і ці компоненти описуються набором параметрів. Компоненти або фундаментальні змінні можуть бути атомами, елементарними частинками, атомарними спінами тощо. Параметри типово описують взаємодію між компонентами. Це можуть бути характеристики зв'язку, що задають сили, або масові параметри, або власне самі масові параметри. Може статися, що компоненти складають зі схожих між собою дрібніших.

Наприклад, у квантовій електродинаміці електрон, якщо приглянутися, виглядає так, наче він складається з електрона, позитрона і фотона. Звичний електрон наче одягнений у шубу з інших частинок. Електричний заряд та маса голого електрона дещо відрізняються, і ця різниця визначається з рівнянь ренормгрупи. The idea of scale transformations and scale invariance is old in physics: Scaling arguments were commonplace for the Pythagorean school, Euclid, and up to Galileo.[1] They became popular again at the end of the 19th century, perhaps the first example being the idea of enhanced viscosity of Osborne Reynolds, as a way to explain turbulence.

The renormalization group was initially devised in particle physics, but nowadays its applications extend to solid-state physics, fluid mechanics, physical cosmology, and even nanotechnology. An early article[2] by Ernst Stueckelberg and André Petermann in 1953 anticipates the idea in quantum field theory. Stueckelberg and Petermann opened the field conceptually. They noted that renormalization exhibits a group of transformations which transfer quantities from the bare terms to the counter terms. They introduced a function h(e) in quantum electrodynamics (QED), which is now called the beta function (see below).

Beginnings

Murray Gell-Mann and Francis E. Low restricted the idea to scale transformations in QED in 1954,[3] which are the most physically significant, and focused on asymptotic forms of the photon propagator at high energies. They determined the variation of the electromagnetic coupling in QED, by appreciating the simplicity of the scaling structure of that theory. They thus discovered that the coupling parameter g(μ) at the energy scale μ is effectively given by the group equation

,

for some function G (unspecified—nowadays called Wegner's scaling function) and a constant d, in terms of the coupling g(M) at a reference scale M.

Gell-Mann and Low realized in these results that the effective scale can be arbitrarily taken as μ, and can vary to define the theory at any other scale:

.

The gist of the RG is this group property: as the scale μ varies, the theory presents a self-similar replica of itself, and any scale can be accessed similarly from any other scale, by group action, a formal transitive conjugacy of couplings[4] in the mathematical sense (Schröder's equation).

On the basis of this (finite) group equation and its scaling property, Gell-Mann and Low could then focus on infinitesimal transformations, and invented a computational method based on a mathematical flow function ψ(g) = G d/(∂G/∂g) of the coupling parameter g, which they introduced. Like the function h(e) of Stueckelberg and Petermann, their function determines the differential change of the coupling g(μ) with respect to a small change in energy scale μ through a differential equation, the renormalization group equation:

.

The modern name is also indicated, the beta function, introduced by C. Callan and K. Symanzik in 1970.[5] Since it is a mere function of g, integration in g of a perturbative estimate of it permits specification of the renormalization trajectory of the coupling, that is, its variation with energy, effectively the function G in this perturbative approximation. The renormalization group prediction (cf. Stueckelberg–Petermann and Gell-Mann–Low works) was confirmed 40 years later at the LEP accelerator experiments: the fine structure "constant" of QED was measured to be about 1127 at energies close to 200 GeV, as opposed to the standard low-energy physics value of 1137 .[b]

Deeper understanding

The renormalization group emerges from the renormalization of the quantum field variables, which normally has to address the problem of infinities in a quantum field theory.[c] This problem of systematically handling the infinities of quantum field theory to obtain finite physical quantities was solved for QED by Richard Feynman, Julian Schwinger and Shin'ichirō Tomonaga, who received the 1965 Nobel prize for these contributions. They effectively devised the theory of mass and charge renormalization, in which the infinity in the momentum scale is cut off by an ultra-large regulator, Λ.[d]

The dependence of physical quantities, such as the electric charge or electron mass, on the scale Λ is hidden, effectively swapped for the longer-distance scales at which the physical quantities are measured, and, as a result, all observable quantities end up being finite instead, even for an infinite Λ. Gell-Mann and Low thus realized in these results that, infinitesimally, while a tiny change in g is provided by the above RG equation given ψ(g), the self-similarity is expressed by the fact that ψ(g) depends explicitly only upon the parameter(s) of the theory, and not upon the scale μ. Consequently, the above renormalization group equation may be solved for (G and thus) g(μ).

A deeper understanding of the physical meaning and generalization of the renormalization process, which goes beyond the dilation group of conventional renormalizable theories, considers methods where widely different scales of lengths appear simultaneously. It came from condensed matter physics: Leo P. Kadanoff's paper in 1966 proposed the "block-spin" renormalization group.[7] The "blocking idea" is a way to define the components of the theory at large distances as aggregates of components at shorter distances.

This approach covered the conceptual point and was given full computational substance in the extensive important contributions of Kenneth Wilson. The power of Wilson's ideas was demonstrated by a constructive iterative renormalization solution of a long-standing problem, the Kondo problem, in 1975,[8] as well as the preceding seminal developments of his new method in the theory of second-order phase transitions and critical phenomena in 1971.[9][10][11] He was awarded the Nobel prize for these decisive contributions in 1982.[12]

Reformulation

Meanwhile, the RG in particle physics had been reformulated in more practical terms by Callan and Symanzik in 1970.[5][13] The above beta function, which describes the "running of the coupling" parameter with scale, was also found to amount to the "canonical trace anomaly", which represents the quantum-mechanical breaking of scale (dilation) symmetry in a field theory. (Remarkably, quantum mechanics itself can induce mass through the trace anomaly and the running coupling.) Applications of the RG to particle physics exploded in number in the 1970s with the establishment of the Standard Model.

In 1973,[14][15] it was discovered that a theory of interacting colored quarks, called quantum chromodynamics, had a negative beta function. This means that an initial high-energy value of the coupling will eventuate a special value of μ at which the coupling blows up (diverges). This special value is the scale of the strong interactions, μ = ΛQCD and occurs at about 200 MeV. Conversely, the coupling becomes weak at very high energies (asymptotic freedom), and the quarks become observable as point-like particles, in deep inelastic scattering, as anticipated by Feynman-Bjorken scaling. QCD was thereby established as the quantum field theory controlling the strong interactions of particles.

Momentum space RG also became a highly developed tool in solid state physics, but its success was hindered by the extensive use of perturbation theory, which prevented the theory from reaching success in strongly correlated systems. In order to study these strongly correlated systems, variational approaches are a better alternative.

Conformal symmetry

The conformal symmetry is associated with the vanishing of the beta function. This can occur naturally if a coupling constant is attracted, by running, toward a fixed point at which β(g) = 0. In QCD, the fixed point occurs at short distances where g → 0 and is called a (trivial) ultraviolet fixed point. For heavy quarks, such as the top quark, the coupling to the mass-giving Higgs boson runs toward a fixed non-zero (non-trivial) infrared fixed point, first predicted by Pendleton and Ross (1981),[16] and C. T. Hill.[17] The top quark Yukawa coupling lies slightly below the infrared fixed point of the Standard Model suggesting the possibility of additional new physics, such as sequential heavy Higgs bosons.

In string theory conformal invariance of the string world-sheet is a fundamental symmetry: β = 0 is a requirement. Here, β is a function of the geometry of the space-time in which the string moves. This determines the space-time dimensionality of the string theory and enforces Einstein's equations of general relativity on the geometry. The RG is of fundamental importance to string theory and theories of grand unification.

It is also the modern key idea underlying critical phenomena in condensed matter physics.[18] Indeed, the RG has become one of the most important tools of modern physics.[19] It is often used in combination with the Monte Carlo method.[20] --->

Примітки

  1. Масштабні перетворення є підмножиною конформаційних перетворень, які включають ще додаткові оператори спеціальних конформаційних перетворень.
  2. Early applications to quantum electrodynamics are discussed in the influential 1959 book The Theory of Quantized Fields by Nikolay Bogolyubov and Dmitry Shirkov.[6]
  3. Although note that the RG exists independently of the infinities.
  4. The regulator parameter Λ could ultimately be taken to be infinite – infinities reflect the pileup of contributions from an infinity of degrees of freedom at infinitely high energy scales.
  1. Introduction to Scaling Laws. av8n.com.
  2. Stueckelberg, E.C.G.; Petermann, A. (1953). La renormalisation des constants dans la théorie de quanta. Helv. Phys. Acta (FR) . 26: 499—520.
  3. Gell-Mann, M.; Low, F. E. (1954). Quantum Electrodynamics at Small Distances (PDF). Physical Review. 95 (5): 1300—1312. Bibcode:1954PhRv...95.1300G. doi:10.1103/PhysRev.95.1300.
  4. Curtright, T.L.; Zachos, C.K. (March 2011). Renormalization Group Functional Equations. Physical Review D. 83 (6): 065019. arXiv:1010.5174. Bibcode:2011PhRvD..83f5019C. doi:10.1103/PhysRevD.83.065019.
  5. а б Callan, C.G. (1970). Broken scale invariance in scalar field theory. Physical Review D. 2 (8): 1541—1547. Bibcode:1970PhRvD...2.1541C. doi:10.1103/PhysRevD.2.1541.
  6. Bogoliubov, N.N.; Shirkov, D.V. (1959). The Theory of Quantized Fields. New York, NY: Interscience.
  7. Kadanoff, Leo P. (1966). Scaling laws for Ising models near . Physics Physique Fizika. 2: 263. doi:10.1103/PhysicsPhysiqueFizika.2.263.
  8. Wilson, K.G. (1975). The renormalization group: Critical phenomena and the Kondo problem. Rev. Mod. Phys. 47 (4): 773. Bibcode:1975RvMP...47..773W. doi:10.1103/RevModPhys.47.773.
  9. Wilson, K.G. (1971). Renormalization group and critical phenomena. I. Renormalization group and the Kadanoff scaling picture. Physical Review B. 4 (9): 3174—3183. Bibcode:1971PhRvB...4.3174W. doi:10.1103/PhysRevB.4.3174.
  10. Wilson, K. (1971). Renormalization group and critical phenomena. II. Phase-space cell analysis of critical behavior. Physical Review B. 4 (9): 3184—3205. Bibcode:1971PhRvB...4.3184W. doi:10.1103/PhysRevB.4.3184.
  11. Wilson, K.G.; Fisher, M. (1972). Critical exponents in 3.99 dimensions. Physical Review Letters. 28 (4): 240. Bibcode:1972PhRvL..28..240W. doi:10.1103/physrevlett.28.240.
  12. Wilson, Kenneth G. Wilson's Nobel Prize address (PDF). NobelPrize.org.
  13. Symanzik, K. (1970). Small distance behaviour in field theory and power counting. Communications in Mathematical Physics. 18 (3): 227—246. Bibcode:1970CMaPh..18..227S. doi:10.1007/BF01649434.
  14. Gross, D.J.; Wilczek, F. (1973). Ultraviolet behavior of non-Abelian gauge theories. Physical Review Letters. 30 (26): 1343—1346. Bibcode:1973PhRvL..30.1343G. doi:10.1103/PhysRevLett.30.1343.
  15. Politzer, H.D. (1973). Reliable perturbative results for strong interactions. Physical Review Letters. 30 (26): 1346—1349. Bibcode:1973PhRvL..30.1346P. doi:10.1103/PhysRevLett.30.1346.
  16. Pendleton, Brian; Ross, Graham (1981). Mass and mixing angle predictions from infrared fixed points. Physics Letters B. 98 (4): 291—294. Bibcode:1981PhLB...98..291P. doi:10.1016/0370-2693(81)90017-4.
  17. Hill, Christopher T. (1981). Quark and lepton masses from renormalization group fixed points. Physical Review D. 24 (3): 691—703. Bibcode:1981PhRvD..24..691H. doi:10.1103/PhysRevD.24.691.
  18. Shankar, R. (1994). Renormalization-group approach to interacting fermions. Reviews of Modern Physics. 66 (1): 129—192. arXiv:cond-mat/9307009. Bibcode:1994RvMP...66..129S. doi:10.1103/RevModPhys.66.129. (For nonsubscribers see Shankar, R. (1993). Renormalization-group approach to interacting fermions. Reviews of Modern Physics. 66: 129—192. arXiv:cond-mat/9307009. doi:10.1103/RevModPhys.66.129..)
  19. Adzhemyan, L.Ts.; Kim, T.L.; Kompaniets, M.V.; Sazonov, V.K. (August 2015). Renormalization group in the infinite-dimensional turbulence: determination of the RG-functions without renormalization constants. Nanosystems: Physics, Chemistry, Mathematics. 6 (4): 461. doi:10.17586/2220-8054-2015-6-4-461-469.
  20. Callaway, David J.E.; Petronzio, Roberto (1984). Determination of critical points and flow diagrams by Monte Carlo renormalization group methods. Physics Letters B. 139 (3): 189—194. Bibcode:1984PhLB..139..189C. doi:10.1016/0370-2693(84)91242-5. ISSN 0370-2693.