Матеріал з Вікіпедії — вільної енциклопедії.
Подстраница "Користувач:Галактион/Ознака збіжності д'Аламбера" создана для того, чтобы перенести иноформацию из раздела "Обговорення" статьи "Ознака збіжності д'Аламбера". Галактион 08:04, 6 березня 2010 (UTC)
Дополнение к статье "Ознака збiжностi Д'Аламбера"
t
⊢
a
:
N
↦
R
∧
∃
q
∈
(
0
,
1
)
∃
N
∈
N
∀
n
∈
N
∧
n
>
N
(
|
a
n
+
1
|
≤
q
⋅
|
a
n
|
)
→
(
∑
i
=
0
∞
|
a
i
|
)
∈
R
{\displaystyle ~t\vdash \quad \mathrm {a} :\mathbb {N} \mapsto \mathbb {R} \quad \land \quad \exists _{q\ \in \ (0,1)}\ \exists _{N\ \in \ \mathbb {N} }\ \forall _{n\ \in \ \mathbb {N} \ \land \ n\ >\ N}\ (|a_{n+1}|\ \leq \ q\cdot |a_{n}|)\quad \to \quad (\sum _{i=0}^{\infty }|a_{i}|)\in \mathbb {R} }
Примечание
(
∑
i
=
0
∞
|
a
i
|
)
∈
R
⇔
∃
L
(
L
∈
R
∧
L
=
∑
i
=
0
∞
|
a
i
|
)
{\displaystyle ~(\sum _{i=0}^{\infty }|a_{i}|)\in \mathbb {R} \quad \Leftrightarrow \quad \exists L\ (L\in \mathbb {R} \ \land \ L=\sum _{i=0}^{\infty }|a_{i}|)}
t
⊢
a
:
N
↦
R
∧
∀
n
∈
N
(
a
n
≠
0
)
∧
lim
n
→
∞
|
a
n
+
1
a
n
|
∈
(
0
,
1
)
→
(
∑
i
=
0
∞
|
a
i
|
)
∈
R
{\displaystyle ~t\vdash \quad \mathrm {a} :\mathbb {N} \mapsto \mathbb {R} \quad \land \quad \forall _{n\ \in \ \mathbb {N} }\ (a_{n}\neq 0)\quad \land \quad \lim _{n\to \infty }\left|{\frac {a_{n+1}}{a_{n}}}\right|\in (0,1)\quad \to \quad (\sum _{i=0}^{\infty }|a_{i}|)\in \mathbb {R} }
t
⊢
a
:
N
↦
R
∧
∀
n
∈
N
(
a
n
>
0
)
∧
∀
L
∈
R
(
L
≠
∑
i
=
0
∞
a
i
)
∧
b
:
N
↦
R
→
{\displaystyle ~t\vdash \quad \mathrm {a} :\mathbb {N} \mapsto \mathbb {R} \quad \land \quad \forall _{n\ \in \ \mathbb {N} }\ (a_{n}>0)\quad \land \quad \forall _{L\ \in \ \mathbb {R} }\ (L\neq \sum _{i=0}^{\infty }a_{i})\quad \land \quad \mathrm {b} :\mathbb {N} \mapsto \mathbb {R} \quad \to }
(
∃
q
∈
(
0
,
∞
)
∃
N
∈
N
∀
n
∈
N
(
n
≥
N
→
b
n
+
1
≠
0
∧
a
n
⋅
b
n
b
n
+
1
−
a
n
+
1
≥
q
)
→
∃
L
∈
R
(
L
=
∑
i
=
0
∞
b
i
)
)
{\displaystyle ~(\exists _{q\ \in \ (0,\infty )}\ \exists _{N\ \in \ \mathbb {N} }\ \forall _{n\ \in \ \mathbb {N} }\ (n\geq N\ \to \ b_{n+1}\neq 0\ \ \land \ \ a_{n}\cdot {\frac {b_{n}}{b_{n+1}}}\ -\ a_{n+1}\geq q)\ \to \ \exists _{L\ \in \ \mathbb {R} }(L=\sum _{i=0}^{\infty }b_{i})\ )}
∧
{\displaystyle ~\land }
(
∃
q
∈
(
−
∞
,
0
]
∃
N
∈
N
∀
n
∈
N
(
n
≥
N
→
b
n
+
1
≠
0
∧
a
n
⋅
b
n
b
n
+
1
−
a
n
+
1
≤
q
)
→
∀
L
∈
R
(
L
≠
∑
i
=
0
∞
b
i
)
)
{\displaystyle ~(\exists _{q\ \in \ (-\infty ,0]}\ \exists _{N\ \in \ \mathbb {N} }\ \forall _{n\ \in \ \mathbb {N} }\ (n\geq N\to \ b_{n+1}\neq 0\ \ \land \ \ a_{n}\cdot {\frac {b_{n}}{b_{n+1}}}\ -\ a_{n+1}\leq q)\to \ \forall _{L\ \in \ \mathbb {R} }(L\neq \sum _{i=0}^{\infty }b_{i})\ )}
Другая формулировка Kummer's test
t
⊢
a
:
N
↦
R
∧
∀
n
∈
N
(
a
n
>
0
)
∧
∀
L
∈
R
(
L
≠
∑
i
=
0
∞
a
i
)
∧
b
:
N
↦
R
→
{\displaystyle ~t\vdash \quad \mathrm {a} :\mathbb {N} \mapsto \mathbb {R} \quad \land \quad \forall _{n\ \in \ \mathbb {N} }\ (a_{n}>0)\quad \land \quad \forall _{L\ \in \ \mathbb {R} }\ (L\neq \sum _{i=0}^{\infty }a_{i})\quad \land \quad \mathrm {b} :\mathbb {N} \mapsto \mathbb {R} \quad \to }
(
∃
q
∈
(
0
,
∞
)
(
q
=
lim
n
→
∞
(
a
n
b
n
b
n
+
1
−
a
n
+
1
)
)
→
∃
L
∈
R
(
L
=
∑
i
=
0
∞
b
i
)
)
∧
{\displaystyle ~(\exists _{q\ \in \ (0,\infty )}\ (q=\lim _{n\to \infty }(a_{n}{\frac {b_{n}}{b_{n+1}}}\ -\ a_{n+1}))\ \to \ \exists _{L\ \in \ \mathbb {R} }\ (L=\sum _{i=0}^{\infty }b_{i}))\quad \land }
(
∃
q
∈
(
−
∞
,
0
)
(
q
=
lim
n
→
∞
(
a
n
b
n
b
n
+
1
−
a
n
+
1
)
)
→
∀
L
∈
R
(
L
≠
∑
i
=
0
∞
b
i
)
)
{\displaystyle ~(\exists _{q\ \in \ (-\infty ,0)}\ (q=\lim _{n\to \infty }(a_{n}{\frac {b_{n}}{b_{n+1}}}\ -\ a_{n+1}))\ \to \ \forall _{L\ \in \ \mathbb {R} }\ (L\neq \sum _{i=0}^{\infty }b_{i}))}
t
⊢
b
:
N
↦
R
→
{\displaystyle ~t\vdash \quad \mathrm {b} :\mathbb {N} \mapsto \mathbb {R} \quad \to }
(
∃
q
∈
(
1
,
∞
)
∃
N
∈
N
∀
n
∈
N
(
n
≥
N
→
b
n
+
1
≠
0
∧
n
⋅
(
b
n
b
n
+
1
−
1
)
≥
q
)
→
∃
L
∈
R
(
L
=
∑
i
=
1
∞
b
i
)
)
{\displaystyle ~(\exists _{q\ \in \ (1,\infty )}\ \exists _{N\ \in \ \mathbb {N} }\ \forall _{n\ \in \ \mathbb {N} }\ (n\geq N\ \to \ b_{n+1}\neq 0\ \land \ n\cdot ({\frac {b_{n}}{b_{n+1}}}\ -\ 1)\geq q)\quad \to \quad \exists _{L\ \in \ \mathbb {R} }\ (L=\sum _{i=1}^{\infty }b_{i}))}
∧
{\displaystyle ~\land }
(
∃
q
∈
(
−
∞
,
1
]
∃
N
∈
N
∀
n
∈
N
(
n
≥
N
→
b
n
+
1
≠
0
∧
n
⋅
(
b
n
b
n
+
1
−
1
)
≤
q
)
→
∀
L
∈
R
(
L
≠
∑
i
=
1
∞
b
i
)
)
{\displaystyle ~(\exists _{q\ \in \ (-\infty ,1]}\ \exists _{N\ \in \ \mathbb {N} }\ \forall _{n\ \in \ \mathbb {N} }\ (n\geq N\ \to \ b_{n+1}\neq 0\ \land \ n\cdot ({\frac {b_{n}}{b_{n+1}}}\ -\ 1)\leq q)\quad \to \quad \forall _{L\ \in \ \mathbb {R} }\ (L\neq \sum _{i=1}^{\infty }b_{i}))}
Другая формулировка Raabe's test
t
⊢
b
:
N
↦
R
→
{\displaystyle ~t\vdash \quad \mathrm {b} :\mathbb {N} \mapsto \mathbb {R} \quad \to }
(
∃
q
∈
(
1
,
∞
)
(
q
=
lim
n
→
∞
n
(
b
n
b
n
+
1
−
1
)
)
→
∃
L
∈
R
(
L
=
∑
i
=
1
∞
b
i
)
)
∧
{\displaystyle ~(\exists _{q\ \in \ (1,\infty )}\ (q=\lim _{n\to \infty }n({\frac {b_{n}}{b_{n+1}}}-1))\ \to \ \exists _{L\ \in \ \mathbb {R} }\ (L=\sum _{i=1}^{\infty }b_{i}))\quad \land }
(
∃
q
∈
(
−
∞
,
1
)
(
q
=
lim
n
→
∞
n
(
b
n
b
n
+
1
−
1
)
)
→
∀
L
∈
R
(
L
≠
∑
i
=
1
∞
b
i
)
)
{\displaystyle ~(\exists _{q\ \in \ (-\infty ,1)}\ (q=\lim _{n\to \infty }n({\frac {b_{n}}{b_{n+1}}}-1))\ \to \ \forall _{L\ \in \ \mathbb {R} }\ (L\neq \sum _{i=1}^{\infty }b_{i}))}
Галактион 21:07, 15 серпня 2009 (UTC)