Васильків Олег Орестович

Матеріал з Вікіпедії — вільної енциклопедії.
(Перенаправлено з Олег Васильків)
Перейти до навігації Перейти до пошуку

Васильків Олег Орестович (1968 р. н., смт Перегінське, Рожнятівський район, Івано-Франківська область) - український вчений–матеріалознавець, доктор технічних наук (2006), лауреат державної премії України в галузі науки і техніки за 2015 рік.

Сфера наукових інтересів: наноструктурне матеріалознавство, кераміка, оксиди, карбіди, нітриди, бориди та їх композити, тугоплавка кераміка, високотемпературна міцність, зміцнення кераміки, інженерія оксидних та неоксидних нанодисперсних порошкових систем, іскроплазмове спікання (electric field assisted sintering technique (EFAST), spark plasma sintering (SPS)), спікання методом теплового пробою ("flash" sintering, "flash"-SPS), реакційний та нереакційний синтез та консолідація, нановибуховий синтез, інженерія багатокатіонних оксидних наносистем, нанореактори, карбіди, нітриди та бориди; легка масивна кераміка та її динамічні властивості.

З біографії[ред. | ред. код]

Закінчив Київський політехнічний ін-т (1994).

Аспірант ІПМ НАН України 1994-1997. Кандидат технічних наук (1997). Доктор технічних наук (2006).

Від 1997 працював в Ін-ті проблем матеріалознавства НАН України (Київ): від 2006 – пров. науковий співробітник.

Водночас від 1999 – дослідник (STA-JSPS Fellow (post-doc)) Нац. ін-ту металів (NRIM) Японії, від 2001 дослідник Нац. ін-ту матеріалознавства (NIMS) Японії (Special Researcher- post-doc fellow of NIMS) , від 2004 дослідник міжнародного центру молодих вчених (ICYS international fellow), а від 2008 постійний співробітник Нац. ін-ту матеріалознавства (NIMS) Японії.

Станом на 2023 р. працює в Національний інститут матеріалознавства, Цукуба, Японія (National Institute for Materials Science, Japan). Провідний науковий співробітник[1]

Творчий доробок[ред. | ред. код]

Автор понад 500 публікацій включно з доповідями на конференціях. З них 129 публікацій ISI.

Окремі публікації[ред. | ред. код]

  • A. Kuncser, O. Vasylkiv, H. Borodianska, D. Demirskyi & P. Badica, "High bending strength at 1800 °C exceeding 1GPa in TiB2-B4C composite", Scientific Report, 13 (2023) 6915 https://doi.org/10.1038/s41598-023-33135-w
  • D. Demirskyi, K. Yoshimi, T.S. Suzuki, O. Vasylkiv, “Reactive consolidation of tough, deformation resistant tantalum monoboride”, Scripta Materialia 229 May (2023) 115383 http://dx.doi.org/10.1016/j.scriptamat.2023.115383
  • D. Demirskyi, T. Nishimura, K. Yoshimi, O. Vasylkiv, “High-strength, medium entropy Zr-Ta-Nb diboride ceramics”, Scripta Materialia 225 1 Mar (2023) 115170 http://dx.doi.org/10.1016/j.scriptamat.2022.115170
  • D. Demirskyi, T. Nishimura, T.S. Suzuki, K. Yoshimi, O. Vasylkiv, "Consolidation and high-temperature properties of ceramics in the TaC–NbC system", J. Amer. Ceram. Soc., 105 [12] Dec. 7567-7581 (2022) https://doi.org/10.1111/jace.18660
  • D. Demirskyi, T. Nishimura, T.S. Suzuki, K. Yoshimi, O. Vasylkiv, “Reactive consolidation and high-temperature strength of HfB2–SiB6”, J. Euro. Ceram. Soc., 42 [12] Sept. 4783-4792 (2022) https://doi.org/10.1016/j.jeurceramsoc.2022.05.004
  • D. Demirskyi, T.S. Suzuki, K. Yoshimi, O. Vasylkiv, "High-temperature reactive synthesis of the Zr-Ta multiboride with a supercomposite structure", J. Amer. Ceram. Soc., 105 [11] Nov. 6989-7002 (2022) https://doi.org/10.1111/jace.18653
  • M. A. Grigoroscuta, G. Aldica, M. Burdusel, V. Sandu, A. Kuncser, I. Pasuk, A. Ionescu, T.S. Suzuki, O. Vasylkiv, P. Badica, “Towards high degree of c-axis orientation in MgB2”, Journal of Magnesium and Alloys. 10 [8] Aug.  2173-2184 (2022) https://doi.org/10.1016/j.jma.2021.10.013
  • D. Demirskyi, T.S. Suzuki, K. Yoshimi, O. Vasylkiv, “Consolidation and high-temperature strength of monolithic lanthanum hexaboride”, J. Amer. Ceram. Soc., 105 [6] 4277-4290 (2022) https://doi.org/10.1111/jace.18331
  • D. Demirskyi, P. Badica, A. Kuncser, and O. Vasylkiv, “Fracture peculiarities and high-temperature strength of bulk polycrystalline boron”, Materialia, 24 Jan (2022) 101346 https://doi.org/10.1016/j.mtla.2022.101346
  • D. Demirskyi, H. Sepehri-Amin, T.S. Suzuki, K. Yoshimi, and O. Vasylkiv, “Ultra-high temperature flexure and strain driven amorphization in polycrystalline boron carbide bulks”, Scripta Materialia 210 15 Mar (2022) 114487 https://doi.org/10.1016/j.scriptamat.2021.114487
  • D. Demirskyi, H. Borodianska, T. Nishimura, T.S. Suzuki, K. Yoshimi, O. Vasylkiv, "Deformation-resistant Ta0.2Hf0.8C solid-solution ceramic with superior flexural strength at 2000°C”, J. Amer. Ceram. Soc., 105 [1] 512-524 (2022)   https://doi.org/10.1111/jace.18072
  • D. Demirskyi, O. Vasylkiv, K. Yoshimi, “High-temperature deformation in bulk polycrystalline hafnium carbide consolidated using spark plasma sintering”, J. Euro. Ceram. Soc., 41 [15] Dec. (2021) 7442-7449 https://doi.org/10.1016/j.jeurceramsoc.2021.08.038
  • D. Demirskyi, O. Vasylkiv, K. Yoshimi, “Allotropic strengthening and in situ phase transformations during ultra-high-temperature flexure of bulk tantalum nitride”, Mat. Sci. & Eng. A 826 (4), 5 Oct. (2021) 141954 https://doi.org/10.1016/j.msea.2021.141954
  • D. Demirskyi, T. Nishimura, T.S. Suzuki, Y. Sakka, O. Vasylkiv, K. Yoshimi, “High-temperature toughening in ternary high-entropy (Ta1/3Ti1/3Zr1/3)C carbide consolidated using spark-plasma sintering”, J Asian Ceram. Societies, 8 [4] (2020) 1262-1270, https://doi.org/10.1080/21870764.2020.1840703
  • D. Demirskyi, T.S. Suzuki, K. Yoshimi, O. Vasylkiv,  “Synthesis and high-temperature properties of medium-entropy (Ti,Ta,Zr,Nb)C using the spark plasma consolidation of carbide powders”, Open Ceramics, 2 July (2020) 100015 https://doi.org/10.1016/j.oceram.2020.100015.
  • O. Vasylkiv, D. Demirskyi, H. Borodianska, A. Kuncser, P. Badica, “High-temperature strength of boron carbide with Pt grain-boundary framework in situ synthesized during spark plasma sintering”, Ceramics International, 46 [7] May 9136-9144 (2020) https://doi.org/10.1016/j.ceramint.2019.12.163
  • O. Vasylkiv, H. Borodianska, D. Demirskyi, P. Li, T.S. Suzuki, M.A. Grigoroscuta, I. Pasuk, A. Kuncser, P. Badica, "Bulks of Al-B-C obtained by reactively spark plasma sintering and impact properties by Split Hopkinson Pressure Bar", Scientific Reports (2019) 9:19484 https://doi.org/10.1038/s41598-019-55888-z
  • D. Demirskyi, I. Solodkyi, T. Nishimura, and O. Vasylkiv, “Fracture and property relationships in the double diboride ceramic composites by spark plasma sintering of TiB2 and NbB2”, J. Amer. Ceram. Soc. 102 [7] Jul. 4259-4271 (2019) https://doi.org/10.1111/jace.16276
  • D. Demirskyi, H. Borodianska, T.S. Suzuki, Y. Sakka, K. Yoshimi, and O. Vasylkiv, “High-temperature flexural strength performance of ternary high-entropy carbide consolidated via spark plasma sintering of TaC, ZrC and NbC”, Scripta Materialia, 164 Apr (2019) 12-16 https://doi.org/10.1016/j.scriptamat.2019.01.024
  • D. Demirskyi, T.S. Suzuki, S. Grasso, and O. Vasylkiv, “Microstructure and flexural strength of hafnium diboride via flash and conventional spark plasma sintering”, J. Euro. Ceram. Soc., 39 [4] Apr. 898-906 (2019), https://doi.org/10.1016/j.jeurceramsoc.2018.12.012
  • D. Demirskyi, I. Solodkyi, T. Nishimura, Y. Sakka and O. Vasylkiv, “High-temperature strength and plastic deformation behavior of bulk niobium diboride consolidated by spark plasma sintering”, J. Amer. Ceram. Soc. 100 [11] Nov. 5295-5305 (2017) https://doi.org/10.1111/jace.15048
  • D. Demirskyi, O. Vasylkiv, “Flexural strength behavior of a ZrB2–TaB2 composite consolidated by non-reactive spark plasma sintering at 2300 °C”,  Int. J. Refract. Met. & Hard Mater. 66 Aug. 31-35 (2017) https://doi.org/10.1016/j.ijrmhm.2017.02.003
  • D. Demirskyi, O. Vasylkiv, “Spark plasma sintering and high-temperature strength of B6O–TaB2 ceramics”, J. Euro. Ceram. Soc. 37 [8] Jul. 3009–3014 (2017) https://doi.org/10.1016/j.jeurceramsoc.2017.02.052
  • D. Demirskyi, O. Vasylkiv, “Analysis of high-temperature flexural strength behavior of B4C–TaB2 eutectic composites produced by in situ spark plasma sintering”, Mater. Sci. & Eng. A. 697 14 Jun. 71-78 (2017) https://doi.org/10.1016/j.msea.2017.04.093
  • O. Bezdorozhev, T. Kolodiazhnyi, O. Vasylkiv, “Precipitation synthesis and magnetic properties of self-assembled magnetite-chitosan nanostructures”, J. Magn. Magn. Mater. 428 [15] Apr. 406-411 (2017) https://doi.org/10.1016/j.jeurceramsoc.2016.08.009
  • D. Demirskyi, H. Borodianska, Y. Sakka, O. Vasylkiv, “Ultra-high elevated temperature strength of TiB2-based ceramics consolidated by spark plasma sintering”, J. Euro. Ceram. Soc., 37 [1] Jan. 393-397 (2017).
  • D. Demirskyi, O. Vasylkiv, “Mechanical properties of SiC–NbB2 eutectic composites by in situ spark plasma sintering”, Ceramics International, 42 [16] 19372-19385 (2016) https://doi.org/10.1016/j.ceramint.2016.09.110
  • S. S. Xie, O. Vasylkiv, and A. I. Y. Tok, “Highly Ordered Nano-Scale Structure of Green-Lipped Mussel Perna canaliculus”, CrystEngComm., 18 7501-7505 (2016), https://doi.org/10.1039/C6CE01223J
  • D. Demirskyi, I. Solodkyi, Y. Sakka, O. Vasylkiv, “High-temperature strength of boron suboxide ceramic consolidated by spark plasma sintering”, J. Amer. Ceram. Soc., 99 [8] 2769-2777 (2016) https://doi.org/10.1111/jace.14308
  • O. Vasylkiv, H. Borodianska, Y. Sakka, D. Demirskyi, “Flash spark plasma sintering of ultrafine yttria-stabilized zirconia ceramics”, Scripta Materialia, 121 [8] 32-36 (2016) https://doi.org/10.1016/j.scriptamat.2016.04.031
  • O. Vasylkiv, O. Bezdorozhev, Y. Sakka, “Synthesis of iron oxide nanoparticles with different morphologies by precipitation method with and without chitosan addition”, J. Ceram. Soc. Japan, 124 [4] 489-494 (2016) https://doi.org/10.2109/jcersj2.15288
  • O. Vasylkiv, D. Demirskyi, P. Badica, T. Nishimura, A. I. Y. Tok, Y. Sakka, H. Borodianska, “Room and high temperature flexural failure of spark plasma sintered boron carbide”, Ceramics International, 42 7001-7013 (2016) https://doi.org/10.1016/j.ceramint.2016.01.088
  • I. Solodkyi, D. Demirskyi, Y. Sakka, O. Vasylkiv, “Hardness and toughness control of brittle boron suboxide ceramics by consolidation of star-shaped particles by spark plasma sintering”, Ceramics International, 42 3525-3530 (2016) https://doi.org/10.1016/j.ceramint.2015.10.157
  • D. Demirskyi, T. Nishimura, Y. Sakka, O. Vasylkiv, “High-strength TiB2–TaC ceramic composites prepared using reactive spark plasma consolidation”, Ceramics International, 42 1298-1306 (2016) https://doi.org/10.1016/j.ceramint.2015.09.065
  • I. Solodkyi, D. Demirskyi, Y. Sakka, O. Vasylkiv, “Synthesis of Multi-Layered Star-Shaped B6O Particles Using the Seed-mediated Growth Method”, J. Amer. Ceram. Soc. 98 [12] 3635-3638 (2015) https://doi.org/10.1111/jace.13928
  • D. Demirskyi, Y. Sakka, O. Vasylkiv, “High-Temperature Reactive Spark Plasma Consolidation of TiB2–NbC Ceramic Composites”,  Ceramics International, 41 [9] 10828-10834 (2015) https://doi.org/10.1016/j.ceramint.2015.05.022
  • S. S. Xie, H. Chen, I. Solodkyi, O. Vasylkiv, A. I.Y. Tok,"Cyclic Formation of Boron Suboxide Crystallites into Star-Shaped Nanoplates", Scripta Materialia, 99 [4] 69-72 (2015) https://doi.org/10.1016/j.scriptamat.2014.11.031
  • P. Badica, G. V. Aldica, M. Burdusel, H. Borodianska, Y. Sakka, and O. Vasylkiv, Challenges of nanostructuring and functional properties for selected bulk materials obtained by reactive spark plasma sintering. J. Journal. .Appl. Phys. 53 [5] 05FB22 (2014) http://dx.doi.org/10.7567/JJAP.53.05FB22
  • I. Solodkyi, H. Borodianska, T. Zhao, TY. Sakka, P. Badica, and O. Vasylkiv, B6O ceramic by in-situ reactive spark plasma sintering of B2O3 and B powder mixture”, J. Ceram. Soc. Japan, 122 [4] (2014) http://dx.doi.org/10.2109/jcersj2.122.336
  • Bogomol, H. Borodianska, T. Zhao, T. Nishimura, Y. Sakka, P. Loboda and O. Vasylkiv, “A dense and tough (B4C-TiB2)-B4C ‘composite within a composite’ by spark plasma sintering”, Scripta Materialia, 71 [1] 17–20 (2014) https://doi.org/10.1016/j.scriptamat.2013.09.022
  • P. Badica, H. Borodianska, X. Shumao, T. Zhao, D. Demirskyi, P. Li, A. I. Y. Tok, Y. Sakka, and O. Vasylkiv, “Toughness Control of Boron Carbide Obtained by Spark Plasma Sintering in Nitrogen Atmosphere”, Ceramics International, 40 [2] 3053-3061 (2014) https://doi.org/10.1016/j.ceramint.2013.09.141
  • I. Solodkyi, S. S. Xie, T. Zhao, H. Borodianska, Y. Sakka and O. Vasylkiv, “Synthesis of B6O powder and spark plasma sintering of B6O and B6O-B4C ceramics”, J. Ceram. Soc. Japan, 121 [11] 950-955 (2013) https://doi.org/10.2109/jcersj2.121.950
  • S.S. Xie, O. Vasylkiv, O. Siberschmidt, A.I.Y. Tok, "Bio-inspired structured boron carbide-boron nitride composite by reactive spark plasma sintering", Virtual and Physical Prototyping 8 [4], 253-258 (2013) https://doi.org/10.1080/17452759.2013.862959
  • I. Bogomol, P. Badica, Y. Shen, T. Nishimura, P. Loboda, O. Vasylkiv, “Room and high temperature toughening in directionally solidified B4C–TiB2 eutectic composites by Si doping”, J. Alloys Compounds, 570 [9] 94-99 (2013) https://doi.org/10.1016/j.jallcom.2013.03.084
  • O. Vasylkiv, H. Borodianska, P. Badica, S. Grasso, Y. Sakka, A. Tok, L. Su, M. Bosman, and J. Ma, “High Hardness BaCb-(BxOy/BN) Composites with 3D Mesh-Like Fine Grain-Boundary Structure by Reactive Spark Plasma Sintering”, J. Nanosci. Nanotechnol., 12  959-965 (2012) https://doi.org/10.1166/jnn.2012.5875
  • H. Borodianska, D. Demirskyi, Y. Sakka, P. Badica and O. Vasylkiv, Grain boundary diffusion driven spark plasma sintering of nanocrystalline zirconia”, Ceramics Internation, 38  4385-4389 (2012) https://doi.org/10.1016/j.ceramint.2011.12.064
  • D. Demirskyi, H. Borodianska, S. Grasso, Y. Sakka, O. Vasylkiv, “Microstructure evolution during field-assisted sintering of zirconia spheres”, Scripta Materialia, 65 683–686 (2011) https://doi.org/10.1016/j.scriptamat.2011.07.006
  • L. T. Su, S. Xie, J. Guo, A. I. Y. Tok, and O. Vasylkiv, “A Novel Non-Catalytic Synthesis Method for Zero- and Two-Dimensional B13C2 Nanostructures”, CrystEngComm., 13  1299-1303 (2011) https://doi.org/10.1039/C0CE00296H
  • Grasso, C. Hu, O. Vasylkiv, T. S. Suzuki, S. Guo, T. Nishimura, Y. Sakka, “High-hardness B4C textured by strong magnetic field technique”, Scripta Materialia, 64  256-259 (2011) https://doi.org/10.1016/j.scriptamat.2010.10.010
  • H. Borodianska, T. Ludvinskaya, Y. Sakka, I. Uvarova, O. Vasylkiv, “Bulk Ti1-xAlxN nano-composite via spark plasma sintering of nanostructured Ti1-xAlxN-AlN powders”, Scripta Materialia, 61 1020-1023 (2009) https://doi.org/10.1016/j.scriptamat.2009.08.019
  • Vasylkiv O., Sakka Y., Skorokhod V.V. “Nano-Explosion Synthesis of Multi-Component Ceramic Nano-Composites”. J. Euro. Ceram. Soc. 27 [2-3] 585-592 (2007) https://doi.org/10.1016/j.jeurceramsoc.2006.04.157
  • Vasylkiv O., Sakka Y., Skorokhod V.V. “Nano-Blast Synthesis of Nanosize CeO2-Gd2O3 Powders”. J. Amer. Ceram. Soc. 89 [6] 1822-1826 (2006) https://doi.org/10.1002/9780470588246.ch22
  • Vasylkiv O. & Sakka Y., “Nanoexplosion Synthesis of Multimetal Oxide Ceramic Nanopowders”. Nano Letters. 5 [12] 2598-2604 (2005) https://doi.org/10.1021/nl052045+
  • Vasylkiv O., Sakka Y., Maeda Y., Skorokhod V.V., “Sonochemical preparation and properties of Pt-3Y-TZP nano-composites”. J. Amer. Ceram. Soc.. 88 [3] 639-644 (2005) https://doi.org/10.1111/j.1551-2916.2005.00099.x
  • Vasylkiv O., Sakka Y., Maeda Y., Skorokhod V.V. “Nano-engineering of zirconia-noble metals composites”. J. Euro. Ceram. Soc. 24 [2] 469-473 (2004) https://doi.org/10.1016/S0955-2219(03)00204-8
  • Vasylkiv O., Sakka Y., and Skorokhod V. V. “Hardness and Fracture Toughness of Alumina-Doped Tetragonal Zirconia with Different Yttria Contents”. Materials Transactions JIM. 44, [10] 2235-2238 (2003) https://doi.org/10.2320/matertrans.44.2235
  • Vasylkiv O., Sakka Y., and Skorokhod V. V. “Low-temperature processing and mechanical properties of zirconia and zirconia-alumina nano-ceramics”. J. Amer. Ceram. Soc. 86 [2] 299-304 (2003) https://doi.org/10.1111/j.1151-2916.2003.tb00015.x
  • Vasylkiv O. and Sakka Y. “Synthesis and Colloidal Processing of Zirconia Nano-Powder”. J. Amer. Ceram. Soc. 84 [11] 2489-2494 (2001) https://doi.org/10.1111/j.1151-2916.2001.tb01041.x
  • Vasylkiv O., Sakka Y. and Borodians’ka H. “Nonisothermal synthesis of yttria stabilized zirconia nano-powder through oxalate processing. II. Morphology manipulation”. J. Am. Ceram. Soc. 84 [11] 2484-2488 (2001) https://doi.org/10.1111/j.1151-2916.2001.tb01040.x
  • Vasylkiv O. and Sakka Y. “Hydroxide synthesis, colloidal processing and sintering of nano-size 3Y-TZP powder”. Scripta Materialia, 44 2219-2223 (2001) http://dx.doi.org/10.1016/S1359-6462(01)00748-5
  • Vasylkiv O. and Sakka Y. “Nonisothermal synthesis of yttria stabilized zirconia nano-powder through oxalate processing. I. Peculiarities of (Y-Zr) oxalate synthesis and its decomposition”. J. Amer. Ceram. Soc. 83 [9] 2196-2202 (2000) https://doi.org/10.1111/j.1151-2916.2001.tb01040.x

Примітки[ред. | ред. код]

Джерела[ред. | ред. код]

Література[ред. | ред. код]