Аксіома паралельності Евкліда

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Перетин прямих (анімація)

Аксіо́ма парале́льності Евклі́да, або п'я́тий постула́т — одна з аксіом, що лежать в основі класичної планіметрії. Вперше наведена в «Началах» Евкліда:

Якщо пряма, що перетинає дві інші прямі, утворює внутрішні односторонні кути, які менші, ніж два прямі кути, то ці дві прямі перетнуться як завгодно далеко з тієї сторони, де кути.

Оригінальний текст (д.-гр.)

Καὶ ἐὰν εἰς δύο εὐθείας εὐθεῖα ἐμπίπτουσα τὰς ἐντὸς καὶ ἐπὶ τὰ αὐτὰ μέρη γωνίας δύο ὀρθῶν ἐλάσσονας ποιῇ, ἐκβαλλομένας τὰς δύο εὐθείας ἐπ' ἄπειρον συμπίπτειν, ἐφ' ἃ μέρη εἰσὶν αἱ τῶν δύο ὀρθῶν ἐλάσσονες.

ΣTOIXEIA EΥKΛEI∆OΥ

П'ятий постулат дуже сильно відрізняється від інших постулатів Евкліда, простих та інтуїтивно очевидних (див. Начала Евкліда). Тому протягом 2 тисячоліть не припинялися спроби виключити його зі списку аксіом і вивести як теорему. Всі ці спроби закінчилися невдачею. «Ймовірно, неможливо в науці знайти більш захоплюючу і драматичну історію, ніж історія п'ятого постулату Евкліда»[1]. Незважаючи на негативний результат, ці пошуки не були марними, так як врешті-решт привели до повного перегляду наукових уявлень про геометрію Всесвіту.

Еквівалентні формулювання постулату про паралельність[ред.ред. код]

У сучасних джерелах зазвичай приводиться друге формулювання постулату про паралельність, що належить Проклу, еквівалентне (рівносильне) V постулату[2]:

У площині через точку, що не лежить на даній прямій, можна провести одну і лише одну пряму, паралельну даній.

Примітки[ред.ред. код]

  1. Смилга, 1988, С. 4
  2. История математики / Под редакцией А. П. Юшкевича, в трёх томах. — М.: Наука, 1970. — Т. I. — С. 110.

Посилання[ред.ред. код]