Теорема Гюйгенса — Штейнера

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Ілюстрація до теореми Гюйгенса-Штейнера.

Теоре́ма Гю́йгенса — Штейнера, або теорема Штейнера (названа іменами швейцарського математика Якова Штейнера і нідерландського математика, фізика і астронома Хрістіана Гюйгенса): момент інерції тіла відносно довільної осі дорівнює сумі моменту інерції цього тіла відносно осі, що проходить через центр маси тіла паралельно до осі, що розглядається і добутку маси тіла на квадрат відстані між осями:

.

Момент інерції досягає свого мінімального значення, коли вісь проходить через центр мас.

Наприклад, момент інерції стрижня відносно осі, що проходить через його кінець, становить:

Перерахунок тензора моменту інерції[ред.ред. код]

Теорема Гюйгенса — Штейнера допускає узагальнення на тензор моменту інерції, що дозволяє отримати тензор відносно довільної точки з тензора відносно центру мас. Нехай d — зміщення від центру мас, тоді

де

 — вектор зміщення від центру мас,
 — символ Кронекера.

Як видно, для діагональних елементів тензора (при i = j) формула набуде вигляду теореми Гюйгенса-Штейнера для перерахунку моменту інерції відносно паралельної осі.

Див. також[ред.ред. код]

Література[ред.ред. код]

  • Павловський М. А. Теоретична механіка: Підручник для студентів вищих навчальних закладів.- К.: Техніка,2002.- 512 с. ISBN 966-575-184-0.
  • Цасюк В. В. Теоретична механіка: Навчальний посібник.- К.: ЦУЛ, 2004.- 402 с. ISBN 966-8253-79-5
  • Федорченко А. М. Теоретична механіка.- Київ: Вища школа, 1975. — 516 с.

Посилання[ред.ред. код]