Хронологія далекого майбутнього: відмінності між версіями

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку
[неперевірена версія][неперевірена версія]
Вилучено вміст Додано вміст
мНемає опису редагування
Рядок 507: Рядок 507:


== Примітки ==
== Примітки ==
{{reflist
{{примітки}}
| colwidth = 30em
| refs =
<ref name="Nave">
{{cite web | title = Second Law of Thermodynamics | last = Nave | first = C.R. | url = http://hyperphysics.phy-astr.gsu.edu/hbase/thermo/seclaw.html | publisher = [[Georgia State University]] | accessdate =3 December 2011
}}
</ref>

<ref name="five ages">
{{cite book | last1 = Adams | first1 = Fred | last2 = Laughlin | first2 = Greg | year = 1999 | title = The Five Ages of the Universe | publisher = The Free Press | location = New York | isbn = 978-0-684-85422-9
}}
</ref>

<ref name="dying">
{{cite journal | title = A dying universe: the long-term fate and evolution of astrophysical objects | last = Adams | first = Fred C.|coauthors=Laughlin, Gregory | journal = Reviews of Modern Physics | volume = 69 | issue = 2 | date = April 1997 | pages = 337–372 | bibcode = 1997RvMP...69..337A | doi = 10.1103/RevModPhys.69.337 | arxiv = astro-ph/9701131
}}
</ref>

<ref name="Komatsu">
{{cite journal | title = Seven-Year Wilkinson Microwave Anisotropy Probe (WMAP) Observations: Cosmological Interpretation | last1 = Komatsu | first1 = E. | last2 = Smith | first2 = K. M. | last3 = Dunkley | first3 = J. | display-authors = 3 | year = 2011 | last4 = Bennett | first4 = C. L. | last5 = Gold | first5 = B. | last6 = Hinshaw | first6 = G. | last7 = Jarosik | first7 = N. | last8 = Larson | first8 = D. | last9 = Nolta | first9 = M. R. | journal = The Astrophysical Journal Supplement Series | volume = 192 | issue = 2 | pages = 18 | bibcode = 2011ApJS..192...19W | arxiv = 1001.4731 | doi = 10.1088/0067-0049/192/2/18
}}
</ref>

<ref name="linde">
{{cite journal | title = Sinks in the Landscape, Boltzmann Brains and the Cosmological Constant Problem | author = Linde, Andrei. | journal = Journal of Cosmology and Astroparticle Physics (subscription required)| year = 2007 | url = http://www.iop.org/EJ/abstract/1475-7516/2007/01/022 | accessdate =26 June 2009 | doi = 10.1088/1475-7516/2007/01/022 | volume = 2007 | issue = 1 | page = 022 | arxiv = hep-th/0611043 | bibcode = 2007JCAP...01..022L
}}
</ref>

<ref name="Matthews1993">
{{cite journal | journal = [[Quarterly Journal of the Royal Astronomical Society]]
| last = Matthews | first = R. A. J. | title = The Close Approach of Stars in the Solar Neighborhood
| volume = 35 | issue = 1 | page = 1 | date = Spring 1994
| bibcode = 1994QJRAS..35....1M
}}
</ref>

<ref name="Berger2002">
{{cite journal | author = Berger, A, and Loutre, MF | title = Climate: an exceptionally long interglacial ahead? | journal = Science | volume = 297 | issue = 5585 | year = 2002 | pages = 1287–8 | doi = 10.1126/science.1076120|pmid=12193773
}}
</ref>

<ref name="Niagara Parks">
{{cite web | title = Niagara Falls Geology Facts & Figures | url = http://www.niagaraparks.com/media/geology-facts-figures.html | publisher = [[Niagara Parks]] | accessdate =29 April 2011
}}
</ref>

<ref name="arxiv1106_3141">
{{cite journal | last1 = Finkleman | first1 = David | last2 = Allen | first2 = Steve | last3 = Seago | first3 = John | last4 = Seaman | first4 = Rob | last5 = Seidelmann | first5 = P. Kenneth | title = The Future of Time: UTC and the Leap Second | journal = ArXiv eprint |date = June 2011 | bibcode = 2011arXiv1106.3141F | arxiv = 1106.3141 | volume = 1106 | pages = 3141
}}
</ref>

<ref name="Tapping 2005">
{{cite web | title = The Unfixed Stars | last = Tapping | first = Ken | publisher = [[National Research Council Canada]] | url = http://www.nrc-cnrc.gc.ca/eng/education/astronomy/tapping/2005/2005-08-31.html | year = 2005 | accessdate =29 December 2010
}}
</ref>

<ref name="Monnier Tuthill Lopez 1999">
{{cite journal | title = The Last Gasps of VY Canis Majoris: Aperture Synthesis and Adaptive Optics Imagery | last1 = Monnier | first1 = J. D. | last2 = Tuthill | first2 = P. | last3 = Lopez | first3 = GB | display-authors = 3 | year = 1999 | last4 = Cruzalebes | first4 = P. | last5 = Danchi | first5 = W. C. | last6 = Haniff | first6 = C. A. | journal = The Astrophysical Journal | volume = 512 | issue = 1 | pages = 351 | doi = 10.1086/306761 | bibcode = 1999ApJ...512..351M | arxiv = astro-ph/9810024
}}
</ref>

<ref name="toba">
{{cite web | title = Super-eruptions: Global effects and future threats | publisher = The Geological Society | url = https://www.geolsoc.org.uk/Education-and-Careers/Resources/Papers-and-Reports/~/media/shared/documents/education%20and%20careers/Super_eruptions.ashx | accessdate =25 May 2012
}}
</ref>

<ref name="havo">
{{cite web | title = Frequently Asked Questions | publisher = Hawai'i Volcanoes National Park | year = 2011 | url = http://www.nps.gov/havo/faqs.htm | accessdate =22 October 2011
}}
</ref>

<ref name="Bostrom 2002">
{{cite journal | last = Bostrom | first = Nick | authorlink = Nick Bostrom | date = March 2002 | title = Existential Risks: Analyzing Human Extinction Scenarios and Related Hazards | journal = Journal of Evolution and Technology | volume = 9 | issue = 1 | url = http://www.nickbostrom.com/existential/risks.html|accessdate=10 September 2012
}}
</ref>

<ref name="beteldeath">
{{cite web | title = Sharpest Views of Betelgeuse Reveal How Supergiant Stars Lose Mass | date = 29 July 2009 | work = Press Releases | publisher = [[European Southern Observatory]] | url = http://www.eso.org/public/news/eso0927/ | accessdate =6 September 2010
}}
</ref>

<ref name="betel">
{{cite web
|title=Betelgeuse will explode someday
|publisher=EarthSky Communications, Inc
|author=Sessions, Larry
|date =29 July 2009
|url=http://earthsky.org/brightest-stars/betelgeuse-will-explode-someday
|accessdate=16 November 2010}}
</ref>

<ref name="gliese">
{{cite journal | last = Bobylev | first = Vadim V. | date= March 2010 | title = Searching for Stars Closely Encountering with the Solar System | journal = Astronomy Letters | volume = 36 | issue = 3 | pages = 220–226 | doi = 10.1134/S1063773710030060 | arxiv = 1003.2160 | bibcode = 2010AstL...36..220B
}}
</ref>

<ref name="phobos">
{{cite journal | last = Sharma | first = B. K. | title = Theoretical formulation of the Phobos, moon of Mars, rate of altitudinal loss | year = 2008 | journal = Eprint arXiv:0805.1454 | url = http://adsabs.harvard.edu/cgi-bin/bib_query?arXiv:0805.1454 |accessdate=10 September 2012
}}
</ref>

<ref name="rift">
{{cite web | title = Birth of an Ocean: The Evolution of Ethiopia's Afar Depression | last = Haddok | first = Eitan | date = 29 September 2008 | publisher = ''[[Scientific American]]'' | url = http://www.scientificamerican.com/article.cfm?id=birth-of-an-ocean | accessdate =27 December 2010
}}
</ref>

<ref name="trench">
{{cite book | title = Essentials of Oceanography | last = Garrison | first = Tom |edition=5 | page = 62 | publisher = Brooks/Cole | year = 2009
}}
</ref>

<ref name="medi">
{{cite web | title = Continents in Collision: Pangea Ultima | publisher = [[NASA]] | year = 2000 | url = http://science.nasa.gov/science-news/science-at-nasa/2000/ast06oct_1/ | accessdate =29 December 2010
}}
</ref>

<ref name="kpg1">
{{cite web | title = Meteorites, Impacts, and Mass Extinction | last = Nelson | first = Stephen A. | publisher = [[Tulane University]] | url = http://www.tulane.edu/~sanelson/geol204/impacts.htm | accessdate =13 January 2011
}}
</ref>

<ref name="galyear">
{{cite web | title = Period of the Sun's Orbit Around the Galaxy (Cosmic Year) | first = Stacy | last = Leong | url = http://hypertextbook.com/facts/2002/StacyLeong.shtml | year = 2002 | work = The Physics Factbook | accessdate =2 April 2007
}}
</ref>

<ref name="scotese">
{{cite web | url = http://www.scotese.com/newpage11.htm| last = Scotese | first = Christopher R. | title = Pangea Ultima will form 250 million years in the Future | work = Paleomap Project | accessdate =13 March 2006
}}
</ref>

<ref name="Williams Nield 2007">
{{cite news | last1 = Williams | first1 = Caroline | last2 = Nield | first2 = Ted | title = Pangaea, the comeback | work = New Scientist | date = 20 October 2007-10-20 | url = http://www.science.org.au/nova/newscientist/104ns_011.htm | accessdate = 2 January 2014
}}
</ref>

<ref name="Heath Doyle 2009">
{{cite arXiv | last1 = Heath | first1 = Martin J. | last2 = Doyle | first2 = Laurance R. | title = Circumstellar Habitable Zones to Ecodynamic Domains: A Preliminary Review and Suggested Future Directions | eprint=0912.2482 | year = 2009
}}
</ref>

<ref name="600mil">
{{cite web | url = http://webcache.googleusercontent.com/search?q=cache:http://sunearthday.nasa.gov/2006/faq.php | title = Questions Frequently Asked by the Public About Eclipses | date = | publisher = [[NASA]] | accessdate =7 March 2010
}}
</ref>

<ref name="bd2_6_1665">
{{cite journal | last1 = Franck | first1 = S. | last2 = Bounama | first2 = C. | last3 = Von Bloh | first3 = W. | title = Causes and timing of future biosphere extinction | journal = Biogeosciences Discussions | volume = 2 | issue = 6 | pages = 1665–1679 | date= November 2005 | bibcode = 2005BGD.....2.1665F | url = http://biogeosciences-discuss.net/2/1665/2005/bgd-2-1665-2005.pdf | accessdate =19 October 2011 | doi = 10.5194/bgd-2-1665-2005
}}
</ref>

<ref name="mnras386_1">
{{cite journal | last1 = Schröder | first1 = K.-P. | last2 = Connon Smith | first2 = Robert | title = Distant future of the Sun and Earth revisited | journal = Monthly Notices of the Royal Astronomical Society | volume = 386 | issue = 1 | date = 1 May 2008 | pages = 155–163 | doi = 10.1111/j.1365-2966.2008.13022.x | bibcode = 2008MNRAS.386..155S
|arxiv = 0801.4031 }}
</ref>

<ref name="abode">
{{cite book | last1 = Brownlee | first1 = Donald E. | year = 2010 | chapter = Planetary habitability on astronomical time scales | title = Heliophysics: Evolving Solar Activity and the Climates of Space and Earth | editor1-first = Carolus J. | editor1-last = Schrijver | editor2-first = George L. | editor2-last = Siscoe | chapterurl = http://books.google.com/books?id=M8NwTYEl0ngC&pg=PA79 | publisher = Cambridge University Press | isbn = 978-0-521-11294-9
}}
</ref>

<ref name="mars">
{{cite book | title = Mars: A Warmer, Wetter Planet | author = Kargel, Jeffrey Stuart | url = http://books.google.com/?id=0QY0U6qJKFUC&pg=PA509&lpg=PA509&dq=mars+future+%22billion+years%22+sun | page = 509 | isbn = 978-1-85233-568-7 | year = 2004 | publisher = Springer | accessdate =29 October 2007
}}
</ref>

<ref name="ng4_264">
{{cite journal | title = Reconciling the Hemispherical Structure of Earth's Inner Core With its Super-Rotation | last1 = Waszek | first1 = Lauren | last2 = Irving | first2 = Jessica | last3 = Deuss | first3 = Arwen | date = 20 February 2011 | journal = Nature Geoscience | volume = 4 | issue = 4 | pages = 264–267 | bibcode = 2011NatGe...4..264W | doi = 10.1038/ngeo1083
}}
</ref>

<ref name="compo">
{{cite journal | title = Compositional Model for the Earth's Core | last = McDonough | first = W. F. | year = 2004 | journal = Treatise on Geochemistry | volume = 2 | pages = 547–568 | doi = 10.1016/B0-08-043751-6/02015-6 | bibcode = 2003TrGeo...2..547M | isbn = 978-0-08-043751-4
}}
</ref>

<ref name="magnet">
{{cite journal | last1 = Luhmann | first1 = J. G. | last2 = Johnson | first2 = R. E. | last3 = Zhang | first3 = M. H. G. | title = Evolutionary impact of sputtering of the Martian atmosphere by O<sup>+</sup> pickup ions | journal = [[Geophysical Research Letters]] | volume = 19 | issue = 21 | pages = 2151–2154 | year = 1992 | bibcode = 1992GeoRL..19.2151L | doi = 10.1029/92GL02485
}}
</ref>

<ref name="wander">
{{cite journal | title = On the Long Term Evolution of the Spin of the Earth | last1 = Neron de Surgey | first1 = O. | last2 = Laskar | first2 = J. | year = 1996 | journal = Astronomie et Systemes Dynamiques, Bureau des Longitudes | volume = 318 | pages = 975| bibcode = 1997A&A...318..975N
}}
</ref>

<ref name="chaos">
{{cite news | title = Study: Earth May Collide With Another Planet | publisher = [[Fox News]] | url = http://www.foxnews.com/story/0,2933,525706,00.html | date = 11 June 2009 | accessdate =8 September 2011
}}
</ref>

<ref name="venus">
{{cite news | title = Science: Fiery Future for Planet Earth | author = Hecht, Jeff | work = New Scientist (subscription required)| url = http://www.newscientist.com/article/mg14219191.900-science-fiery-future-for-planet-earth-.html | date = 2 April 1994 | issue = 1919 | page = 14 | accessdate =29 October 2007
}}
</ref>

<ref name="triton">
{{cite journal | title = Tidal Evolution in the Neptune-Triton System | last1 = Chyba | first1 = C. F. | last2 = Jankowski | first2 = D. G. | last3 = Nicholson | first3 = P. D. | year = 1989 | journal = Astronomy & Astrophysics | volume = 219 | page = 23 | bibcode = 1989A&A...219L..23C
}}
</ref>

<ref name="cox">
{{cite journal | title = The Collision Between The Milky Way And Andromeda | author = Cox, J. T.; Loeb, Abraham | journal = Monthly Notices of the Royal Astronomical Society | year = 2007 | doi = 10.1111/j.1365-2966.2008.13048.x | volume = 386 | issue = 1 | page = 461 | bibcode = 2008MNRAS.tmp..333C | arxiv = 0705.1170
}}
</ref>

<ref name="milk">
{{cite journal | title = Colliding molecular clouds in head-on galaxy collisions | last1 = Braine | first1 = J. | last2 = Lisenfeld | first2 = U. | last3 = Duc | first3 = P. A. | display-authors = 3 | last4 = Brinks | first4 = E. | last5 = Charmandaris | first5 = V. | last6 = Leon | first6 = S. | journal = Astronomy and Astrophysics | volume = 418 | issue = 2 | pages = 419–428 | year = 2004 | doi = 10.1051/0004-6361:20035732 | url = http://www.aanda.org/index.php?option=article&access=doi&doi=10.1051/0004-6361:20035732 | accessdate =2 April 2008 | bibcode = 2004A&A...418..419B | arxiv = astro-ph/0402148
}}
</ref>

<ref name="Schroder 2008">
{{cite journal | last1 = Schroder | first1 = K. P. | last2 = Connon Smith | first2 = Robert | year = 2008 | title = Distant Future of the Sun and Earth Revisited | journal = Monthly Notices of the Royal Astronomical Society | volume = 386 | issue = 1 | pages = 155–163 | bibcode = 2008MNRAS.386..155S | doi = 10.1111/j.1365-2966.2008.13022.x
|arxiv = 0801.4031 }}
</ref>

<ref name="Rybicki2001">
{{cite journal | author = Rybicki, K. R.; Denis, C. | title = On the Final Destiny of the Earth and the Solar System | journal = Icarus | volume = 151 | issue = 1 | pages = 130–137 | year = 2001 | doi = 10.1006/icar.2001.6591 | bibcode = 2001Icar..151..130R
}}
</ref>

<ref name="Titan">
{{cite journal | title = Titan under a red giant sun: A new kind of "habitable" moon | author = Lorenz, Ralph D.; Lunine, Jonathan I.; McKay, Christopher P. | journal = Geophysical Research Letters | year = 1997 | volume = 24 | pages = 2905–8 | url = http://www.lpl.arizona.edu/~rlorenz/redgiant.pdf | accessdate =21 March 2008|format=PDF | doi = 10.1029/97GL52843|pmid=11542268 | issue = 22 | bibcode = 1997GeoRL..24.2905L
}}
</ref>

<ref name="nebula">
{{cite web | author = Balick, Bruce | title = Planetary Nebulae and the Future of the Solar System | publisher= University of Washington|url = http://www.astro.washington.edu/balick/WFPC2/ | accessdate =23 June 2006
}}
</ref>

<ref name="apj676_1_594">
{{cite journal | display-authors=1 | last1 = Kalirai | first1 = Jasonjot S. | last2 = Hansen | first2 = Brad M. S. | last3 = Kelson | first3 = Daniel D. | last4 = Reitzel | first4 = David B. | last5 = Rich | first5 = R. Michael | last6 = Richer | first6 = Harvey B. | title = The Initial-Final Mass Relation: Direct Constraints at the Low-Mass End | journal = The Astrophysical Journal | volume = 676 | issue = 1 | pages = 594–609 | date = March 2008 | doi = 10.1086/527028 | bibcode = 2008ApJ...676..594K
|arxiv = 0706.3894 }}
</ref>

<!--ref name="black">
{{cite journal | last = Vila | first = Samuel C. | title = Evolution of a 0.6 M_{sun} White Dwarf | journal = Astrophysical Journal | year = 1971 | volume = 170 | issue = 153 | doi = 10.1086/151196 | bibcode = 1971ApJ...170..153V
}}
</ref-->

<ref name="bigrip">
{{cite web | title = Universe May End in a Big Rip | date = 1 May 2003 | work = [[CERN Courier]] | url = http://cerncourier.com/cws/article/cern/28845 | accessdate =22 July 2011
}}
</ref>

<ref name="chand">
{{cite journal | title = Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints | last1 = Vikhlinin | first1 = A. | last2 = Kravtsov | first2 = A.V. | last3 = Burenin | first3 = R.A. | year = 2009 | display-authors = 3 | last4 = Ebeling | first4 = H. | last5 = Forman | first5 = W. R. | last6 = Hornstrup | first6 = A. | last7 = Jones | first7 = C. | last8 = Murray | first8 = S. S. | last9 = Nagai | first9 = D. | publisher = [[Astrophysical Journal]] | volume = 692 | page = 1060 | issue = 2 | doi = 10.1088/0004-637X/692/2/1060 | bibcode = 2009ApJ...692.1060V | journal = The Astrophysical Journal
|arxiv = 0812.2720 }}
</ref>

<ref name="tide1">
{{cite book | title = Solar System Dynamics | author = Murray, C.D. and Dermott, S.F. | publisher = [[Cambridge University Press]] | year = 1999 | page = 184 | isbn = 978-0-521-57295-8
}}
</ref>

<ref name="tide2">
{{cite book | last = Dickinson | first = Terence | authorlink = Terence Dickinson | title = From the Big Bang to Planet X | publisher = [[Camden House]] | year = 1993 | location = Camden East, Ontario | pages = 79–81 | url = | isbn = 978-0-921820-71-0
}}
</ref>

<ref name="canup_righter">
{{cite book | first1 = Robin M. | last1 = Canup | first2 = Kevin | last2 = Righter | title = Origin of the Earth and Moon | volume = 30 | series=The University of Arizona space science series | publisher = University of Arizona Press | year = 2000 | isbn = 978-0-8165-2073-2 | pages = 176–177 | url = http://books.google.com/books?id=8i44zjcKm4EC&pg=PA176
}}
</ref>

<ref name="galaxy">
{{cite journal | title = Cosmology with Hypervelocity Stars | author = Loeb, Abraham | work = Harvard University | year = 2011 | arxiv = 1102.0007v2.pdf
}}
</ref>

<ref name="temp">
{{cite book | last = Chown | first = Marcus | title = Afterglow of Creation | publisher = University Science Books | year = 1996 | page = 210 }}
</ref>

<ref name="messier">
{{cite web | title = The Local Group of Galaxies | url = http://messier.seds.org/more/local.html | publisher = Students for the Exploration and Development of Space | work = University of Arizona | accessdate =2 October 2009
}}
</ref>

<ref name="bluedwarf">
{{cite journal | last1 = Adams | first1 = F. C. | last2 = Graves | first2 = G. J. M. | last3 = Laughlin | first3 = G. | chapter = Red Dwarfs and the End of the Main Sequence | title = Gravitational Collapse: From Massive Stars to Planets. / First Astrophysics meeting of the Observatorio Astronomico Nacional. / A meeting to celebrate Peter Bodenheimer for his outstanding contributions to Astrophysics | editor1-first = G. | editor1-last = García-Segura | editor2-first = G. | editor2-last = Tenorio-Tagle | editor3-first = J. | editor3-last = Franco | editor4-first = H. W. | editor4-last = Yorke | journal = Revista Mexicana de Astronomía y Astrofísica (Serie de Conferencias) | volume = 22 | pages = 46–49 | date= December 2004 | bibcode = 2004RMxAC..22...46A
}} See Fig. 3.
</ref>

<ref name="strip">
{{cite book | author = Tayler, Roger John | year = 1993 | title = Galaxies, Structure and Evolution|edition=2 | publisher = Cambridge University Press | page = 92 | isbn = 978-0-521-36710-3
}}
</ref>

<ref name="five degs">
{{cite book | title = The Anthropic Cosmological Principle | last1 = Barrow | first1 = John D. | author1-link = John D. Barrow | last2 = Tipler | first2 = Frank J.| author2-link = Frank J. Tipler | others= foreword by [[John Archibald Wheeler|John A. Wheeler]] | isbn = 978-0-19-282147-8 | id = [http://lccn.loc.gov/87028148 LC 87-28148] | url = http://books.google.com/books?id=uSykSbXklWEC&printsec=frontcover | accessdate =31 December 2009 | date = 19 May 1988 | publisher = Oxford University Press | location = Oxford
}}
</ref>

<ref name="five ages pp85–87">
{{cite book | last1 = Adams | first1 = Fred | last2 = Laughlin | first2 = Greg | year = 1999 | title = The Five Ages of the Universe | publisher = The Free Press | location = New York | pages = 85–87 | isbn = 978-0-684-85422-9
}}
</ref>

<ref name="dyson">
{{cite journal | title = Time Without End: Physics and Biology in an Open Universe | author = Dyson, Freeman J. | journal = Reviews of Modern Physics (subscription required) | volume = 51 | issue = 3 | page = 447 | year = 1979 | url = http://rmp.aps.org/abstract/RMP/v51/i3/p447_1 | accessdate =5 July 2008 | doi = 10.1103/RevModPhys.51.447 | bibcode = 1979RvMP...51..447D
}}
</ref>

<ref name="sun_future_schroder">
{{cite journal | first = K.-P. | last = Schröder | year = 2008 | title = Distant Future of the Sun and Earth Revisited | doi = 10.1111/j.1365-2966.2008.13022.x | journal = Monthly Notices of the Royal Astronomical Society | volume = 386 | issue = 1 | page = 155 | last2 = Connon Smith | first2 = Robert | bibcode = 2008MNRAS.386..155S | arxiv = 0801.4031
}}
</ref>

<ref name="sun future">
{{cite journal | author = Sackmann, I. J.; Boothroyd, A. J.; Kraemer, K. E. | title = Our Sun. III. Present and Future | page = 457 | journal = Astrophysical Journal | year = 1993 | volume = 418 | bibcode = 1993ApJ...418..457S | doi = 10.1086/173407
}}
</ref>

<ref name="proton">
{{cite journal | author = Nishino | year = 2009 | title = Search for Proton Decay via {{Subatomic particle|Proton+}} → {{Subatomic particle|Positron}}{{Subatomic particle|pion0}} and {{Subatomic particle|Proton+}} → {{Subatomic particle|Muon+}}{{Subatomic particle|pion0}} in a Large Water Cherenkov Detector | journal = [[Physical Review Letters]] | volume = 102 | issue = 14 | pages = 141801 | doi = 10.1103/PhysRevLett.102.141801 | bibcode = 2009PhRvL.102n1801N | author-separator = , | author2 = Super-K Collaboration | display-authors = 2 | last3 = Abe | first3 = K. | last4 = Hayato | first4 = Y. | last5 = Iida | first5 = T. | last6 = Ikeda | first6 = M. | last7 = Kameda | first7 = J. | last8 = Kobayashi | first8 = K. | last9 = Koshio | first9 = Y. | authorlink2 = Super-Kamiokande
}}
</ref>

<ref name="half-life">
{{cite book | url = http://www.nap.edu/jhp/oneuniverse/frontiers_solution_17.html | title = One Universe: At Home in the Cosmos | first1 = Neil de Grasse | last1 = Tyson | last2 = Tsun-Chu Liu | first2 = Charles | last3 = Irion | first3 = Robert | publisher = Joseph Henry Press | year = 2000 | isbn = 978-0-309-06488-0 }}
</ref>

<ref name="Page 1976">
{{cite journal | title = Particle Emission Rates from a Black Hole: Massless Particles from an Uncharged, Nonrotating Hole | last = Page | first = Don N. | year = 1976 | journal = Physical Review D | volume = 13 | issue = 2 | pages = 198–206 | bibcode = 1976PhRvD..13..198P | doi = 10.1103/PhysRevD.13.198
}} See in particular equation (27).
</ref>

<ref name="chen">
{{cite book | url = http://arxiv.org/ftp/physics/papers/0703/0703183.pdf | chapter = Dark Energy and Life's Ultimate Future | author = Vaas. Rüdiger | year = 2006|editor=Vladimir Burdyuzha | title = The Future of Life and the Future of our Civilization | publisher = Springer | pages = 231–247 | isbn = 978-1-4020-4967-5
}}
</ref>

<ref name="deneb">
{{cite web | title = Deneb | publisher = University of Illinois | year = 2009 | url = http://stars.astro.illinois.edu/sow/deneb.html | accessdate =5 September 2011
}}
</ref>

<ref name="Solar_eclipses_during_transits">
{{cite journal | title = Simultaneous Transits | author = Meeus, J. and Vitagliano, A. | journal = Journal of the British Astronomical Association | url = http://chemistry.unina.it/~alvitagl/solex/Simtrans.pdf | year = 2004 | volume = 114 | issue = 3 | accessdate =7 September 2011
}}
</ref>

<ref name="greg">
{{cite journal | last = Borkowski | first = K.M. | year = 1991 | title = The Tropical Calendar and Solar Year | journal = J. Royal Astronomical Soc. of Canada | volume = 85 | issue = 3| pages = 121–130 | bibcode = 1991JRASC..85..121B
}}
</ref>

<ref name="vega">
{{cite web | title = Why is Polaris the North Star? | publisher = [[NASA]] | url = http://webcache.googleusercontent.com/search?q=cache:http://starchild.gsfc.nasa.gov/docs/StarChild/questions/question64.html | accessdate =10 April 2011
}}
</ref>

<ref name="plait">
{{cite book | title = Bad Astronomy: Misconceptions and Misuses Revealed, from Astrology to the Moon Landing "Hoax" | author = Plait, Phil | publisher = John Wiley and Sons | year = 2002 | pages = 55–56
}}
</ref>

<ref name="islam">
{{cite web | title = Astronomy Answers: Modern Calendars | author = Strous, Louis | publisher = [[University of Utrecht]] | year = 2010 | url = http://aa.quae.nl/en/antwoorden/moderne_kalenders.html | accessdate =14 September 2011
}}
</ref>

<ref name="mini2">
{{cite journal | last1 = Laskar | first1 = J. | journal = Astronomy and Astrophysics | title = Orbital, Precessional, and Insolation Quantities for the Earth From −20 Myr to +10 Myr | volume=270 | year = 1993 | pages = 522–533 | display-authors = 1 | author2 = <Please add first missing authors to populate metadata.> |bibcode = 1993A&A...270..522L }}
</ref>

<ref name="hayes07">
{{cite journal | author = Hayes, Wayne B. | title = Is the Outer Solar System Chaotic? | journal = Nature Physics | arxiv = astro-ph/0702179 | year = 2007 | volume = 3 | issue = 10 | pages = 689–691 | doi = 10.1038/nphys728 | bibcode = 2007NatPh...3..689H
}}
</ref>

<ref name="time">
{{cite news | title = Hurtling Through the Void | publisher = ''[[Time Magazine]]'' | url = http://www.time.com/time/magazine/article/0,9171,926062,00.html | accessdate =5 September 2011 | date = 20 June 1983
}}
</ref>

<ref name="glob">
{{cite web | url = http://www.news.cornell.edu/releases/Nov99/Arecibo.message.ws.html | title = Cornell News: "It's the 25th Anniversary of Earth's First (and only) Attempt to Phone E.T." |date= 12 November 1999 |publisher=Cornell University | accessdate =29 March 2008 | archiveurl = http://web.archive.org/web/20080802005337/http://www.news.cornell.edu/releases/Nov99/Arecibo.message.ws.html | archivedate = 2 August 2008
}}
</ref>

<ref name="voyager">
{{cite web | title = Voyager: The Interstellar Mission | publisher = NASA | url = http://voyager.jpl.nasa.gov/mission/interstellar.html | accessdate =5 September 2011
}}
</ref>

<ref name="keo1">
{{cite web | title = KEO FAQ | url = http://www.keo.org/uk/pages/faq.html#q1|publisher=keo.org| accessdate =14 October 2011
}}

</ref>

<ref name="Pioneer 1st 7 billion">
{{cite web | title = Pioneer 10 Spacecraft Nears 25TH Anniversary, End of Mission | publisher = nasa.gov | url = http://www.nasa.gov/home/hqnews/1997/97-031.txt | accessdate =2013-12-22
}}
</ref>

<ref name="Pioneer 1st 7 billion2">
{{cite web | title = SPACE FLIGHT 2003 – United States Space Activities | publisher = nasa.gov | url = http://www.nasa.gov/directorates/somd/reports/2003/us.html| accessdate =2013-12-22
}}
</ref>

<ref name="Pioneer Ames">
{{cite web | title = The Pioneer Missions | publisher = NASA | url = http://www.nasa.gov/centers/ames/missions/archive/pioneer.html | accessdate =5 September 2011
}}
</ref>

<ref name="longnow">
{{cite web | title = The Long Now Foundation | publisher = The Long Now Foundation | url = http://longnow.org/about/ | year = 2011 | accessdate =21 September 2011
}}
</ref>

<ref name="brandon">
{{cite journal
| last1 = Carter
| first1 = Brandon
| authorlink = Brandon Carter
| last2 = McCrea
| first2 = W. H.
| year = 1983
| title = The anthropic principle and its implications for biological evolution
| journal = [[Philosophical Transactions of the Royal Society|Philosophical Transactions of the Royal Society of London]]
| volume = A310
| issue = 1512
| pages = 347–363
| doi = 10.1098/rsta.1983.0096
|bibcode = 1983RSPTA.310..347C }}
</ref>

<ref name="typeiii">
{{cite web
| authorlink = Michio Kaku
| last = Kaku
| first = Michio
| year = 2010
| title = The Physics of Interstellar Travel: To one day, reach the stars
| url = http://mkaku.org/home/?page_id=250
| publisher=mkaku.org
| accessdate =29 August 2010
}}
</ref>

<ref name="sublight">
{{cite web | first = I. A. | last = Crawford | publisher = Scientific American | url = http://www.scientificamerican.com/article.cfm?id=where-are-they | title = Where are They? Maybe we are alone in the galaxy after all | date = July 2000 | accessdate =20 July 2012
}}
</ref>

<ref name="global1">
{{cite book | title = Global Catastrophic Risks | editor1-last = Bostrom | editor1-first = Nick | editor2-last = Cirkovic | editor2-first = Milan M. | last = Adams | first = Fred C. | chapter = Long-term astrophysicial processes | pages = 33–47 | publisher = Oxford University Press | year = 2008
}}
</ref>

<ref name="laskar">
{{cite web | title = Astronomical Solutions for Earth Paleoclimates | author = Laskar et al. | url = http://www.imcce.fr/Equipes/ASD/insola/earth/earth.html | publisher = Institut de mecanique celeste et de calcul des ephemerides | accessdate =20 July 2012
}}
</ref>

<ref name="solex">
{{cite web | title = The Solex page | url = http://chemistry.unina.it/~alvitagl/solex/|author=Aldo Vitagliano | year = 2011 | publisher=Università degli Studi di Napoli Federico II| accessdate =20 July 2012
}}
</ref>

<ref name="greg2">
{{cite web | url = http://aa.usno.navy.mil/data/docs/JulianDate.php/ | title= Julian Date Converter| publisher = US Naval Observatory | accessdate =20 July 2012
}}
</ref>

<ref name="lageos">
{{cite web | title = LAGEOS 1, 2 | publisher = NASA | url = http://space.jpl.nasa.gov/msl/QuickLooks/lageosQL.html | accessdate =21 July 2012
}}
</ref>

<ref name="pressure">
{{cite journal | author = Li King-Fai; Pahlevan, Kaveh; Kirschvink, Joseph L.; Yung, Luk L. | year = 2009 | title = Atmospheric pressure as a natural climate regulator for a terrestrial planet with a biosphere | journal = Proceedings of the National Academy of Sciences of the United States of America | volume = 106 | number = 24 | doi = 10.1073/pnas.0809436106
|bibcode = 2009PNAS..106.9576L | pmid=19487662 | pmc=2701016}}
</ref>

<ref name="natgeo">{{cite web|title=Gamma-Ray Burst Caused Mass Extinction?|author= Minard, Anne|publisher= National Geographic News|year=2009|url=http://news.nationalgeographic.com/news/2009/04/090403-gamma-ray-extinction.html|accessdate=2012-08-27
}}</ref>
}}



[[Категорія:Майбутнє]]
[[Категорія:Майбутнє]]

Версія за 18:10, 13 березня 2014

Багато моделей, що описують далеке майбутнє Всесвіту, припускають, що чорні діри залишаться єдиними астрономічними об'єктами.

На космологічній шкалі часу події можуть бути передбачені з більшим або меншим відсотком вірогідності. І хоча пророкування майбутнього не може бути абсолютно точним[1], справжнє наукове розуміння в різних галузях науки дозволяє давати прогнозований курс на майбутні події.

Легенда

Галузь науки
Астрономія і астрофізика Астрономія і астрофізика
Геологія і планетологія Геологія і планетологія
Фізика елементарних часток Фізика елементарних часток
Математика Математика
Технологія та культура Технологія та культура

Майбутнє Землі, Сонячної системи і Всесвіту

Років вперед Подія
Astronomy and astrophysics 36,000 The small red dwarf star Ross 248 passes within 3.024 light years of Earth, becoming the closest star to the Sun.[2] It will recede after about 8,000 years, making first Alpha Centauri and then Gliese 445 the nearest stars[2] (see timeline).
Geology and planetary science 50,000 The current interglacial period ends, according to the work of Berger and Loutre,[3] sending the Earth back into a glacial period of the current ice age, assuming limited effects of anthropogenic global warming.

Niagara Falls will have eroded away the remaining 32 km to Lake Erie, and ceased to exist.[4]

Astronomy and astrophysics 50,000 The length of the day used for astronomical timekeeping reaches about 86,401 SI seconds, due to lunar tides braking the Earth's rotation. Under the present-day timekeeping system, a leap second will need to be added to the clock every day.[5]
Astronomy and astrophysics 100,000 The proper motion of stars across the celestial sphere, which is the result of their movement through the galaxy, renders many of the constellations unrecognisable.[6]
Astronomy and astrophysics 100,000[a] The hypergiant star VY Canis Majoris will have likely exploded in a hypernova.[7]
Geology and planetary science 100,000[a] Earth will likely have undergone a supervolcanic eruption large enough to erupt 400 km3 of magma.[8]
Geology and planetary science 250,000 Lōʻihi, the youngest volcano in the Hawaiian-Emperor seamount chain, rises above the surface of the ocean and becomes a new volcanic island.[9]
Astronomy and astrophysics 500,000[a] Earth will have likely been hit by a meteorite of roughly 1 km in diameter, assuming it cannot be averted.[10]
Geology and planetary science 1 million[a] Earth will likely have undergone a supervolcanic eruption large enough to erupt 3,200 km3 of magma; an event comparable to the Toba supereruption 75,000 years ago.[8]
Astronomy and astrophysics 1 million[a] Highest estimated time until the red supergiant star Betelgeuse explodes in a supernova. The explosion is expected to be easily visible in daylight.[11][12]
Astronomy and astrophysics 1.4 million The star Gliese 710 passes as close as 1.1 light years to the Sun before moving away. This may gravitationally perturb members of the Oort cloud, a halo of icy bodies orbiting at the edge of the Solar System, thereafter increasing the likelihood of a cometary impact in the inner Solar System.[13]
Astronomy and astrophysics 8 million The moon Phobos comes within 7,000 km of Mars, the Roche limit, at which point tidal forces will disintegrate the moon and turn it into a ring of orbiting debris that will continue to spiral in toward the planet.[14]
Geology and planetary science 10 million The widening East African Rift valley is flooded by the Red Sea, causing a new ocean basin to divide the continent of Africa.[15]
Astronomy and astrophysics 11 million The ring of debris around Mars hits the surface of the planet.[14]
Geology and planetary science 50 million The Californian coast begins to be subducted into the Aleutian Trench due to its northward movement along the San Andreas Fault.[16]

Africa's collision with Eurasia closes the Mediterranean Basin and creates a mountain range similar to the Himalayas.[17]

Astronomy and astrophysics 100 million[a] Earth will have likely been hit by a meteorite comparable in size to the one that triggered the K-Pg extinction 65 million years ago.[18]
Mathematics 230 million Beyond this time, the orbits of the planets become impossible to predict due to the limitations of Lyapunov time.[19]
Astronomy and astrophysics 240 million From its present position, the Solar System completes one full orbit of the Galactic center.[20]
Geology and planetary science 250 million All the continents on Earth may fuse into a supercontinent. Three potential arrangements of this configuration have been dubbed Amasia, Novopangaea, and Pangaea Ultima.[21][22]
Geology and planetary science 400-500 million The supercontinent (Pangaea Ultima, Novopangaea, or Amasia) will have likely rifted apart.[22]
Astronomy and astrophysics 500-600 million[a] Estimated time until a gamma ray burst, or massive, hyperenergetic supernova, occurs within 6,500 light-years of Earth; close enough for its rays to affect Earth's ozone layer and potentially trigger a mass extinction, assuming the hypothesis is correct that a previous such explosion triggered the Ordovician-Silurian extinction event. However, the supernova would have to be precisely oriented relative to Earth to have any negative effect.[23]
Astronomy and astrophysics 600 million Tidal acceleration moves the Moon far enough from Earth that total solar eclipses are no longer possible.[24]
Geology and planetary science 600 million The Sun's increasing luminosity begins to disrupt the carbonate-silicate cycle; higher luminosity increases weathering of surface rocks, which traps carbon dioxide in the ground as carbonate. As water evaporates from the Earth's surface, rocks harden, causing plate tectonics to slow and eventually stop. Without volcanoes to recycle carbon into the Earth's atmosphere, carbon dioxide levels begin to fall.[25] By this time, they will fall to the point at which C3 photosynthesis is no longer possible. All plants that utilize C3 photosynthesis (~99 percent of present-day species) will die.[26]
Geology and planetary science 800 million Carbon dioxide levels fall to the point at which C4 photosynthesis is no longer possible.[26] Multicellular life dies out.[27]
Geology and planetary science 1 billion[b] The Sun's luminosity has increased by 10 percent, causing Earth's surface temperatures to reach an average of ~320 K (47 °C, 116 °F). The atmosphere will become a «moist greenhouse», resulting in a runaway evaporation of the oceans.[28] Pockets of water may still be present at the poles, allowing abodes for simple life.[29][30]
Geology and planetary science 1.3 billion Eukaryotic life dies out due to carbon dioxide starvation. Only prokaryotes remain.[27]
Geology and planetary science 1.5-1.6 billion The Sun's increasing luminosity causes its circumstellar habitable zone to move outwards; as carbon dioxide increases in Mars's atmosphere, its surface temperature rises to levels akin to Earth during the ice age.[27][31]
Geology and planetary science 2.3 billion The Earth's outer core freezes, if the inner core continues to grow at its current rate of 1 mm per year.[32][33] Without its liquid outer core, the Earth's magnetic field shuts down,[34] and charged particles emanating from the Sun strip away the ozone layer, which protects the Earth from harmful ultraviolet rays.[35]
Geology and planetary science 2.8 billion Earth's surface temperature, even at the poles, reaches an average of ~420 K (147 °C, 296 °F). At this point life, now reduced to unicellular colonies in isolated, scattered microenvironments such as high-altitude lakes or subsurface caves, will completely die out.[25][36][c]
Astronomy and astrophysics 3 billion Median point at which the Moon's increasing distance from the Earth lessens its stabilising effect on the Earth's axial tilt. As a consequence, Earth's true polar wander becomes chaotic and extreme.[37]
Astronomy and astrophysics 3.3 billion 1 percent chance that Mercury's orbit may become so elongated as to collide with Venus, sending the inner Solar System into chaos and potentially leading to a planetary collision with Earth.[38]
Geology and planetary science 3.5 billion Surface conditions on Earth are comparable to those on Venus today.[39]
Astronomy and astrophysics 3.6 billion Neptune's moon Triton falls through the planet's Roche limit, potentially disintegrating into a planetary ring system similar to Saturn's.[40]
Astronomy and astrophysics 4 billion Median point by which the Andromeda Galaxy will have collided with the Milky Way, which will thereafter merge to form a galaxy dubbed «Milkomeda».[41] The planets of the Solar System are expected to be relatively unaffected by this collision.[42][43][44]
Astronomy and astrophysics 5.4 billion With the hydrogen supply exhausted at its core, the Sun leaves the main sequence and begins to evolve into a red giant.[45]
Astronomy and astrophysics 7.5 billion Earth and Mars may become tidally locked with the expanding Sun.[31]
Astronomy and astrophysics 7.9 billion The Sun reaches the tip of the red-giant branch of the Hertzsprung-Russell diagram, achieving its maximum radius of 256 times the present day value.[45] In the process, Mercury, Venus and possibly Earth are destroyed.[46]

During these times, it is possible that Saturn's moon Titan could achieve surface temperatures necessary to support life.[47]

Astronomy and astrophysics 8 billion Sun becomes a carbon-oxygen white dwarf with about 54.05 percent its present mass.[45][48][49][d]
Astronomy and astrophysics 20 billion The end of the Universe in the Big Rip scenario, assuming a model of dark energy with w = −1.5.[50] Observations of galaxy cluster speeds by the Chandra X-ray Observatory suggest that this will not occur.[51]
Astronomy and astrophysics 50 billion Assuming both survive the Sun's expansion, by this time the Earth and the Moon become tidelocked, with each showing only one face to the other.[52][53] Thereafter, the tidal action of the Sun will extract angular momentum from the system, causing the lunar orbit to decay and the Earth's spin to accelerate.[54]
Astronomy and astrophysics 100 billion The Universe's expansion causes all galaxies beyond the Milky Way's Local Group to disappear beyond the cosmic light horizon, removing them from the observable universe.[55]
Astronomy and astrophysics 150 billion The cosmic microwave background cools from its current temperature of ~2.7 K to 0.3 K, rendering it essentially undetectable with current technology.[56]
Astronomy and astrophysics 450 billion Median point by which the ~47 galaxies[57] of the Local Group will coalesce into a single large galaxy.[58]
Astronomy and astrophysics 800 billion Expected time when the net light emission from the combined Milkomeda galaxy begins to decline as the red dwarf stars pass through their blue dwarf stage of peak luminosity.[59]
Astronomy and astrophysics 1012 (1 trillion) Low estimate for the time until star formation ends in galaxies as galaxies are depleted of the gas clouds they need to form stars.[58]

The universe's expansion, assuming a constant dark energy density, multiplies the wavelength of the cosmic microwave background by 1029, exceeding the scale of the cosmic light horizon and rendering its evidence of the Big Bang undetectable. However, it may still be possible to determine the expansion of the universe through the study of hypervelocity stars.[55]

Astronomy and astrophysics 3×1013 (30 trillion) Estimated time for the remnant Sun to undergo a close encounter with another star in the local Solar neighborhood. Whenever two stars (or stellar remnants) pass close to each other, their planets' orbits can be disrupted, potentially ejecting them from the system entirely. On average, the closer a planet's orbit to its parent star, the longer it takes to be ejected in this manner, because stars rarely pass so closely.[60]
Astronomy and astrophysics 1014 (100 trillion) High estimate for the time until normal star formation ends in galaxies.[58] This marks the transition from the Stelliferous Era to the Degenerate Era; with no free hydrogen to form new stars, all remaining stars slowly exhaust their fuel and die.[61]
Astronomy and astrophysics 1.1-1.2×1014 (110–120 trillion) Time by which all stars in the universe will have exhausted their fuel (the longest-lived stars, low-mass red dwarfs, have lifespans of roughly 10-20 trillion years).[58] After this point, the stellar-mass objects remaining are stellar remnants (white dwarfs, neutron stars and black holes). Brown dwarfs also remain.

Collisions between brown dwarfs will create new red dwarf stars on a marginal level: on average, about 100 will be present in the galaxy. Collisions between stellar remnants will create occasional supernovae.[58]

Astronomy and astrophysics 1015 (1 quadrillion) Estimated time until stellar close encounters detach all planets in Solar Systems from their orbits.[58]

By this point, the Sun will have cooled to five degrees above absolute zero.[62]

Astronomy and astrophysics 1019 to 1020 (10-100 quintillion) Estimated time until 90% — 99% of brown dwarfs and stellar remnants are ejected from galaxies. When two objects pass close enough to each other, they exchange orbital energy, with lower-mass objects tending to gain energy. Through repeated encounters, the lower-mass objects can gain enough energy in this manner to be ejected from their galaxy. This process eventually causes the galaxy to eject the majority of its brown dwarfs and stellar remnants.[58][63]
Astronomy and astrophysics 1020 (100 quintillion) Estimated time until the Earth collides with the black dwarf Sun due to the decay of its orbit via emission of gravitational radiation,[64] if the Earth is neither first engulfed by the red giant Sun a few billion years from now[65][66] nor subsequently ejected from its orbit by a stellar encounter.[64]
Astronomy and astrophysics 1030 Estimated time until those stars not ejected from galaxies (1% — 10%) fall into their galaxies' central supermassive black holes. By this point, with binary stars having fallen into each other, and planets into their stars, via emission of gravitational radiation, only solitary objects (stellar remnants, brown dwarfs, ejected planets, black holes) will remain in the universe.[58]
Particle physics 2×1036 The estimated time for all nucleons in the observable Universe to decay, if the proton half-life takes its smallest possible value (8.2×1033 years).[67][68][e]
Particle physics 3×1043 Estimated time for all nucleons in the observable Universe to decay, if the proton half-life takes the largest possible value, 1041 years,[58] assuming that the Big Bang was inflationary and that the same process that made baryons predominate over anti-baryons in the early Universe makes protons decay.[68][e] By this time, if protons do decay, the Black Hole Era, in which black holes are the only remaining celestial objects, begins.[61][58]
Particle physics 1065 Assuming that protons do not decay, estimated time for rigid objects like rocks to rearrange their atoms and molecules via quantum tunneling. On this timescale, all matter is liquid.[64]
Particle physics 5.8×1068 Estimated time until a stellar mass black hole with a mass of 3 solar masses decays by the Hawking process.[69]
Particle physics 1.9×1098 Estimated time until NGC 4889, the currently largest known supermassive black hole with a mass of 21 billion solar masses, decays by the Hawking process.[69]
Particle physics 1.7×10106 Estimated time until a supermassive black hole with a mass of 20 trillion solar masses decays by the Hawking process.[69] This marks the end of the Black Hole Era. Beyond this time, if protons do decay, the Universe enters the Dark Era, in which all physical objects have decayed to subatomic particles, gradually winding down to their final energy state in the heat death of the universe.[61][58]
Particle physics 10200 Estimated high time for all nucleons in the observable Universe to decay (if they don't via the above process), through any one of many different mechanisms allowed in modern particle physics (higher-order baryon non-conservation processes, virtual black holes, sphalerons, etc.), on time scales of 1046 to 10200 years.[58]
Particle physics 101500 Assuming protons do not decay, the estimated time until all baryonic matter has either fused together to form iron-56 or decayed from a higher mass element into iron-56.[64] (see iron star)
Astronomy and astrophysics [f][g] Low estimate for the time until all matter collapses into black holes, assuming no proton decay.[64] Subsequent Black Hole Era and transition to the Dark Era are, on this timescale, instantaneous.
Particle physics Estimated time for a Boltzmann brain to appear in the vacuum via a spontaneous entropy decrease.[70]
Particle physics Estimated time for random quantum fluctuations to generate a new Big Bang, according to Carroll and Chen.[71]
Astronomy and astrophysics High estimate for the time until all matter collapses into black holes, again assuming no proton decay.[64]
Particle physics High estimate for the time for the Universe to reach its final energy state.[70]

Астрономічні події

This is a list of extremely rare astronomical events after the beginning of the 11th millennium AD (Year 10,001)

Років вперед Дата Подія
Astronomy and astrophysics 8,000
Earth's axial precession makes Deneb the North star.[72]
Astronomy and astrophysics 8639 років, 111 днів 20 August, 10,663 AD A simultaneous total solar eclipse and transit of Mercury.[73]
Astronomy and astrophysics 8695 років, 245 днів 10,720 AD The planets Mercury and Venus will both cross the ecliptic at the same time.[73]
Astronomy and astrophysics 9244 роки, 116 днів 25 August, 11,268 AD A simultaneous total solar eclipse and transit of Mercury.[73]
Astronomy and astrophysics 9550 років, 303 дні 28 February, 11,575 AD A simultaneous annular solar eclipse and transit of Mercury.[73]
Astronomy and astrophysics 10,000
The Gregorian calendar will be roughly 10 days out of sync with the Sun's position in the sky.[74]
Astronomy and astrophysics 11401 рік, 139 днів 17 September 13,425 AD A near-simultaneous transit of Venus and Mercury.[73]
Astronomy and astrophysics 12,000-13,000
The Earth's axial precession will make Vega the North Star.[75][76]
Astronomy and astrophysics 13,000
By this point, halfway through the precessional cycle, Earth's axial tilt will be reversed, causing summer and winter to occur on opposite sides of Earth's orbit. This means that the seasons in the northern hemisphere, which experiences more pronounced seasonal variation due to a higher percentage of land, will be even more extreme, as it will be facing towards the Sun at Earth's perihelion and away from the Sun at aphelion.[76]
Astronomy and astrophysics 14,000-17,000
The Earth's axial precession will make Canopus the South Star, but it will only be within 10° of the south celestial pole.[77]
Astronomy and astrophysics 13207 років, 340 днів 5 April, 15,232 AD A simultaneous total solar eclipse and transit of Venus.[73]
Astronomy and astrophysics 13765 років, 354 дні 20 April, 15,790 AD A simultaneous annular solar eclipse and transit of Mercury.[73]
Astronomy and astrophysics 18849 років, 245 днів 20,874 AD The lunar Islamic calendar and the solar Gregorian calendar will share the same year number. After this, the shorter Islamic calendar will slowly overtake the Gregorian.[78]
Astronomy and astrophysics 27,000
-
The eccentricity of Earth's orbit will reach a minimum, 0.00236 (it is now 0.01671).[79][80][h]
Astronomy and astrophysics 36148 років, 153 дні October, 38,172 AD A transit of Uranus from Neptune, the rarest of all planetary transits.[81][i]
Astronomy and astrophysics 46876 років, 304 дні 1 March, 48,901 AD The Julian calendar (365.25 days) and Gregorian calendar (365.2425 days) will be one year apart.[82][j]
Astronomy and astrophysics 65148 років, 245 днів 67,173 AD The planets Mercury and Venus will both cross the ecliptic at the same time.[73]
Astronomy and astrophysics 67139 років, 86 днів 26 July, 69,163 AD A simultaneous transit of Venus and Mercury.[73]
Astronomy and astrophysics 222483 роки, 331 день 27 and 28 March, 224,508 AD Respectively, Venus and then Mercury will transit the Sun.[73]
Astronomy and astrophysics 569716 років, 245 днів 571,741 AD A simultaneous transit of Venus and the Earth as seen from Mars[73]

Розвідка космічних кораблів

To date five spacecraft (Voyagers 1 and 2, Pioneers 10 and 11 and New Horizons) are on trajectories which will take them out of the Solar System and into interstellar space. Barring an unlikely collision, the craft should persist indefinitely.[83]

Років вперед Подія
Astronomy and astrophysics 10,000 Pioneer 10 passes within 3.8 light years of Barnard's Star.[83]
Astronomy and astrophysics 25,000 The Arecibo message, a collection of radio data transmitted on 16 November 1974, reaches its destination, the globular cluster Messier 13.[84] This is the only interstellar radio message sent to such a distant region of the galaxy. Assuming a similar mode of communication is employed, it should take at least as long again for any reply to reach Earth.
Astronomy and astrophysics 32,000 Pioneer 10 passes within 3 light years of Ross 248.[85][86]
Astronomy and astrophysics 40,000 Voyager 1 passes within 1.6 light years of AC+79 3888, a star in the constellation Camelopardalis.[87]
Astronomy and astrophysics 50,000 The KEO space time capsule, if it is launched, will reenter Earth's atmosphere.[88]
Astronomy and astrophysics 296,000 Voyager 2 passes within 4.3 light years of Sirius, the brightest star in the night sky.[87]
Astronomy and astrophysics 2 million Pioneer 10 passes near the bright star Aldebaran.[89]
Astronomy and astrophysics 4 million Pioneer 11 passes near one of the stars in the constellation Aquila.[89]
Astronomy and astrophysics 8 million The LAGEOS satellites' orbits will decay, and they will re-enter Earth's atmosphere, carrying with them a message to any far future descendants of humanity, and a map of the continents as they are expected to appear then.[90]

Технології та культура

Років вперед Подія
Технології та культура 10,000 Estimated lifespan of the Long Now Foundation's several ongoing projects, including a 10,000-year clock known as the Clock of the Long Now, the Rosetta Project, and the Long Bet Project.[91]
Математика 10,000 Humanity is likely to be extinct by this date, according to one version of Brandon Carter's controversial Doomsday argument, which argues that half of the humans who will ever have lived have probably already been born.[92]
Технології та культура 100,000 — 1 мільйон Fastest time by which humanity could colonize the 100,000 light-year galaxy and become capable of harnessing all the energy of the galaxy, assuming a speed of 0.1c or greater.[93]
Технології та культура 5 — 50 мільйонів Time by which the entire galaxy could be colonised by means within reach of current technology.[94]

Див. також

Примітки

  1. Rescher, Nicholas (1998). Predicting the future: An introduction to the theory of forecasting. State University of New York Press. ISBN 0-7914-3553-9.
  2. а б Matthews, R. A. J. (Spring 1994). The Close Approach of Stars in the Solar Neighborhood. Quarterly Journal of the Royal Astronomical Society. 35 (1): 1. Bibcode:1994QJRAS..35....1M.
  3. Berger, A, and Loutre, MF (2002). Climate: an exceptionally long interglacial ahead?. Science. 297 (5585): 1287—8. doi:10.1126/science.1076120. PMID 12193773.
  4. Niagara Falls Geology Facts & Figures. Niagara Parks. Процитовано 29 April 2011.
  5. Finkleman, David; Allen, Steve; Seago, John; Seaman, Rob; Seidelmann, P. Kenneth (June 2011). The Future of Time: UTC and the Leap Second. ArXiv eprint. 1106: 3141. arXiv:1106.3141. Bibcode:2011arXiv1106.3141F.
  6. Tapping, Ken (2005). The Unfixed Stars. National Research Council Canada. Процитовано 29 December 2010.
  7. Monnier, J. D.; Tuthill, P.; Lopez, GB та ін. (1999). The Last Gasps of VY Canis Majoris: Aperture Synthesis and Adaptive Optics Imagery. The Astrophysical Journal. 512 (1): 351. arXiv:astro-ph/9810024. Bibcode:1999ApJ...512..351M. doi:10.1086/306761.
  8. а б Super-eruptions: Global effects and future threats. The Geological Society. Процитовано 25 May 2012.
  9. Frequently Asked Questions. Hawai'i Volcanoes National Park. 2011. Процитовано 22 October 2011.
  10. Bostrom, Nick (March 2002). Existential Risks: Analyzing Human Extinction Scenarios and Related Hazards. Journal of Evolution and Technology. 9 (1). Процитовано 10 September 2012.
  11. Sharpest Views of Betelgeuse Reveal How Supergiant Stars Lose Mass. Press Releases. European Southern Observatory. 29 July 2009. Процитовано 6 September 2010.
  12. Sessions, Larry (29 July 2009). Betelgeuse will explode someday. EarthSky Communications, Inc. Процитовано 16 November 2010.
  13. Bobylev, Vadim V. (March 2010). Searching for Stars Closely Encountering with the Solar System. Astronomy Letters. 36 (3): 220—226. arXiv:1003.2160. Bibcode:2010AstL...36..220B. doi:10.1134/S1063773710030060.
  14. а б Sharma, B. K. (2008). Theoretical formulation of the Phobos, moon of Mars, rate of altitudinal loss. Eprint arXiv:0805.1454. Процитовано 10 September 2012.
  15. Haddok, Eitan (29 September 2008). Birth of an Ocean: The Evolution of Ethiopia's Afar Depression. Scientific American. Процитовано 27 December 2010.
  16. Garrison, Tom (2009). Essentials of Oceanography (вид. 5). Brooks/Cole. с. 62.
  17. Continents in Collision: Pangea Ultima. NASA. 2000. Процитовано 29 December 2010.
  18. Nelson, Stephen A. Meteorites, Impacts, and Mass Extinction. Tulane University. Процитовано 13 January 2011.
  19. Hayes, Wayne B. (2007). Is the Outer Solar System Chaotic?. Nature Physics. 3 (10): 689—691. arXiv:astro-ph/0702179. Bibcode:2007NatPh...3..689H. doi:10.1038/nphys728.
  20. Leong, Stacy (2002). Period of the Sun's Orbit Around the Galaxy (Cosmic Year). The Physics Factbook. Процитовано 2 April 2007.
  21. Scotese, Christopher R. Pangea Ultima will form 250 million years in the Future. Paleomap Project. Процитовано 13 March 2006.
  22. а б Williams, Caroline; Nield, Ted (20 October 2007-10-20). Pangaea, the comeback. New Scientist. Процитовано 2 January 2014.
  23. Minard, Anne (2009). Gamma-Ray Burst Caused Mass Extinction?. National Geographic News. Процитовано 27 серпня 2012.
  24. Questions Frequently Asked by the Public About Eclipses. NASA. Процитовано 7 March 2010.
  25. а б O'Malley-James, Jack T.; Greaves, Jane S.; Raven; John A.; Cockell; Charles S. (2012). Swansong Biospheres: Refuges for life and novel microbial biospheres on terrestrial planets near the end of their habitable lifetimes (PDF). arxiv.org. Процитовано 1 листопада 2012.
  26. а б Heath, Martin J.; Doyle, Laurance R. (2009). Circumstellar Habitable Zones to Ecodynamic Domains: A Preliminary Review and Suggested Future Directions. arXiv:0912.2482.
  27. а б в Franck, S.; Bounama, C.; Von Bloh, W. (November 2005). Causes and timing of future biosphere extinction (PDF). Biogeosciences Discussions. 2 (6): 1665—1679. Bibcode:2005BGD.....2.1665F. doi:10.5194/bgd-2-1665-2005. Процитовано 19 October 2011.{{cite journal}}: Обслуговування CS1: Сторінки із непозначеним DOI з безкоштовним доступом (посилання)
  28. Schröder, K.-P.; Connon Smith, Robert (1 May 2008). Distant future of the Sun and Earth revisited. Monthly Notices of the Royal Astronomical Society. 386 (1): 155—163. arXiv:0801.4031. Bibcode:2008MNRAS.386..155S. doi:10.1111/j.1365-2966.2008.13022.x.
  29. Brownlee, Donald E. (2010). Planetary habitability on astronomical time scales. У Schrijver, Carolus J.; Siscoe, George L. (ред.). Heliophysics: Evolving Solar Activity and the Climates of Space and Earth. Cambridge University Press. ISBN 978-0-521-11294-9.
  30. Li King-Fai; Pahlevan, Kaveh; Kirschvink, Joseph L.; Yung, Luk L. (2009). Atmospheric pressure as a natural climate regulator for a terrestrial planet with a biosphere. Proceedings of the National Academy of Sciences of the United States of America. 106 (24). Bibcode:2009PNAS..106.9576L. doi:10.1073/pnas.0809436106. PMC 2701016. PMID 19487662.
  31. а б Kargel, Jeffrey Stuart (2004). Mars: A Warmer, Wetter Planet. Springer. с. 509. ISBN 978-1-85233-568-7. Процитовано 29 October 2007.
  32. Waszek, Lauren; Irving, Jessica; Deuss, Arwen (20 February 2011). Reconciling the Hemispherical Structure of Earth's Inner Core With its Super-Rotation. Nature Geoscience. 4 (4): 264—267. Bibcode:2011NatGe...4..264W. doi:10.1038/ngeo1083.
  33. McDonough, W. F. (2004). Compositional Model for the Earth's Core. Treatise on Geochemistry. 2: 547—568. Bibcode:2003TrGeo...2..547M. doi:10.1016/B0-08-043751-6/02015-6. ISBN 978-0-08-043751-4.
  34. Luhmann, J. G.; Johnson, R. E.; Zhang, M. H. G. (1992). Evolutionary impact of sputtering of the Martian atmosphere by O+ pickup ions. Geophysical Research Letters. 19 (21): 2151—2154. Bibcode:1992GeoRL..19.2151L. doi:10.1029/92GL02485.
  35. Quirin Shlermeler (3 March 2005). Solar wind hammers the ozone layer. nature news. doi:10.1038/news050228-12.
  36. Adams, Fred C. (2008). Long-term astrophysicial processes. У Bostrom, Nick; Cirkovic, Milan M. (ред.). Global Catastrophic Risks. Oxford University Press. с. 33—47.
  37. Neron de Surgey, O.; Laskar, J. (1996). On the Long Term Evolution of the Spin of the Earth. Astronomie et Systemes Dynamiques, Bureau des Longitudes. 318: 975. Bibcode:1997A&A...318..975N.
  38. Study: Earth May Collide With Another Planet. Fox News. 11 June 2009. Процитовано 8 September 2011.
  39. Hecht, Jeff (2 April 1994). Science: Fiery Future for Planet Earth. New Scientist (subscription required). № 1919. с. 14. Процитовано 29 October 2007.
  40. Chyba, C. F.; Jankowski, D. G.; Nicholson, P. D. (1989). Tidal Evolution in the Neptune-Triton System. Astronomy & Astrophysics. 219: 23. Bibcode:1989A&A...219L..23C.
  41. Cox, J. T.; Loeb, Abraham (2007). The Collision Between The Milky Way And Andromeda. Monthly Notices of the Royal Astronomical Society. 386 (1): 461. arXiv:0705.1170. Bibcode:2008MNRAS.tmp..333C. doi:10.1111/j.1365-2966.2008.13048.x.{{cite journal}}: Обслуговування CS1: Сторінки з bibcode, який містить тимчасовий ідентифікатор (посилання)
  42. NASA (31 травня 2012). NASA's Hubble Shows Milky Way is Destined for Head-On Collision. NASA. Процитовано 13 жовтня 2012.
  43. Dowd, Maureen (29 May 2012). Andromeda Is Coming!. New York Times. Процитовано 9 January 2014. [NASA's David Morrison] explained that [the Andromeda-Milky Way collision] would just be two great big fuzzy balls of stars and mostly empty space passing through each other harmlessly over the course of millions of years.
  44. Braine, J.; Lisenfeld, U.; Duc, P. A. та ін. (2004). Colliding molecular clouds in head-on galaxy collisions. Astronomy and Astrophysics. 418 (2): 419—428. arXiv:astro-ph/0402148. Bibcode:2004A&A...418..419B. doi:10.1051/0004-6361:20035732. Процитовано 2 April 2008.
  45. а б в Schroder, K. P.; Connon Smith, Robert (2008). Distant Future of the Sun and Earth Revisited. Monthly Notices of the Royal Astronomical Society. 386 (1): 155—163. arXiv:0801.4031. Bibcode:2008MNRAS.386..155S. doi:10.1111/j.1365-2966.2008.13022.x.
  46. Rybicki, K. R.; Denis, C. (2001). On the Final Destiny of the Earth and the Solar System. Icarus. 151 (1): 130—137. Bibcode:2001Icar..151..130R. doi:10.1006/icar.2001.6591.
  47. Lorenz, Ralph D.; Lunine, Jonathan I.; McKay, Christopher P. (1997). Titan under a red giant sun: A new kind of "habitable" moon (PDF). Geophysical Research Letters. 24 (22): 2905—8. Bibcode:1997GeoRL..24.2905L. doi:10.1029/97GL52843. PMID 11542268. Процитовано 21 March 2008.
  48. Balick, Bruce. Planetary Nebulae and the Future of the Solar System. University of Washington. Процитовано 23 June 2006.
  49. Kalirai, Jasonjot S. та ін. (March 2008). The Initial-Final Mass Relation: Direct Constraints at the Low-Mass End. The Astrophysical Journal. 676 (1): 594—609. arXiv:0706.3894. Bibcode:2008ApJ...676..594K. doi:10.1086/527028.
  50. Universe May End in a Big Rip. CERN Courier. 1 May 2003. Процитовано 22 July 2011.
  51. Vikhlinin, A.; Kravtsov, A.V.; Burenin, R.A. та ін. (2009). Chandra Cluster Cosmology Project III: Cosmological Parameter Constraints. The Astrophysical Journal. Astrophysical Journal. 692 (2): 1060. arXiv:0812.2720. Bibcode:2009ApJ...692.1060V. doi:10.1088/0004-637X/692/2/1060.
  52. Murray, C.D. and Dermott, S.F. (1999). Solar System Dynamics. Cambridge University Press. с. 184. ISBN 978-0-521-57295-8.
  53. Dickinson, Terence (1993). From the Big Bang to Planet X. Camden East, Ontario: Camden House. с. 79—81. ISBN 978-0-921820-71-0.
  54. Canup, Robin M.; Righter, Kevin (2000). Origin of the Earth and Moon. The University of Arizona space science series. Т. 30. University of Arizona Press. с. 176—177. ISBN 978-0-8165-2073-2.
  55. а б Loeb, Abraham (2011). Cosmology with Hypervelocity Stars. Harvard University. arXiv:1102.0007v2.pdf. {{cite journal}}: Перевірте значення |arxiv= (довідка)
  56. Chown, Marcus (1996). Afterglow of Creation. University Science Books. с. 210.
  57. The Local Group of Galaxies. University of Arizona. Students for the Exploration and Development of Space. Процитовано 2 October 2009.
  58. а б в г д е ж и к л м н Adams and Laughlin (1997), p. 15 Помилка цитування: Некоректний тег <ref>; назва «dying» визначена кілька разів з різним вмістом
  59. Adams, F. C.; Graves, G. J. M.; Laughlin, G. (December 2004). García-Segura, G.; Tenorio-Tagle, G.; Franco, J.; Yorke, H. W. (ред.). Gravitational Collapse: From Massive Stars to Planets. / First Astrophysics meeting of the Observatorio Astronomico Nacional. / A meeting to celebrate Peter Bodenheimer for his outstanding contributions to Astrophysics. Revista Mexicana de Astronomía y Astrofísica (Serie de Conferencias). 22: 46—49. Bibcode:2004RMxAC..22...46A. {{cite journal}}: Проігноровано |chapter= (довідка) See Fig. 3.
  60. Tayler, Roger John (1993). Galaxies, Structure and Evolution (вид. 2). Cambridge University Press. с. 92. ISBN 978-0-521-36710-3.
  61. а б в Adams, Fred; Laughlin, Greg (1999). The Five Ages of the Universe. New York: The Free Press. ISBN 978-0-684-85422-9.
  62. Barrow, John D.; Tipler, Frank J. (19 May 1988). The Anthropic Cosmological Principle. foreword by John A. Wheeler. Oxford: Oxford University Press. ISBN 978-0-19-282147-8. LC 87-28148. Процитовано 31 December 2009.
  63. Помилка цитування: Неправильний виклик тегу <ref>: для виносок під назвою five ages pp85-87 не вказано текст
  64. а б в г д е Dyson, Freeman J. (1979). Time Without End: Physics and Biology in an Open Universe. Reviews of Modern Physics (subscription required). 51 (3): 447. Bibcode:1979RvMP...51..447D. doi:10.1103/RevModPhys.51.447. Процитовано 5 July 2008.
  65. Schröder, K.-P.; Connon Smith, Robert (2008). Distant Future of the Sun and Earth Revisited. Monthly Notices of the Royal Astronomical Society. 386 (1): 155. arXiv:0801.4031. Bibcode:2008MNRAS.386..155S. doi:10.1111/j.1365-2966.2008.13022.x.
  66. Sackmann, I. J.; Boothroyd, A. J.; Kraemer, K. E. (1993). Our Sun. III. Present and Future. Astrophysical Journal. 418: 457. Bibcode:1993ApJ...418..457S. doi:10.1086/173407.
  67. Nishino, Super-K Collaboration та ін. (2009). Search for Proton Decay via p+
    e+
    π0
    and p+
    μ+
    π0
    in a Large Water Cherenkov Detector. Physical Review Letters. 102 (14): 141801. Bibcode:2009PhRvL.102n1801N. doi:10.1103/PhysRevLett.102.141801.
  68. а б Tyson, Neil de Grasse; Tsun-Chu Liu, Charles; Irion, Robert (2000). One Universe: At Home in the Cosmos. Joseph Henry Press. ISBN 978-0-309-06488-0.
  69. а б в Page, Don N. (1976). Particle Emission Rates from a Black Hole: Massless Particles from an Uncharged, Nonrotating Hole. Physical Review D. 13 (2): 198—206. Bibcode:1976PhRvD..13..198P. doi:10.1103/PhysRevD.13.198. See in particular equation (27).
  70. а б Linde, Andrei. (2007). Sinks in the Landscape, Boltzmann Brains and the Cosmological Constant Problem. Journal of Cosmology and Astroparticle Physics (subscription required). 2007 (1): 022. arXiv:hep-th/0611043. Bibcode:2007JCAP...01..022L. doi:10.1088/1475-7516/2007/01/022. Процитовано 26 June 2009.
  71. Vaas. Rüdiger (2006). Dark Energy and Life's Ultimate Future. У Vladimir Burdyuzha (ред.). The Future of Life and the Future of our Civilization (PDF). Springer. с. 231—247. ISBN 978-1-4020-4967-5.
  72. Deneb. University of Illinois. 2009. Процитовано 5 September 2011.
  73. а б в г д е ж и к л м Meeus, J. and Vitagliano, A. (2004). Simultaneous Transits (PDF). Journal of the British Astronomical Association. 114 (3). Процитовано 7 September 2011.
  74. Borkowski, K.M. (1991). The Tropical Calendar and Solar Year. J. Royal Astronomical Soc. of Canada. 85 (3): 121—130. Bibcode:1991JRASC..85..121B.
  75. Why is Polaris the North Star?. NASA. Процитовано 10 April 2011.
  76. а б Plait, Phil (2002). Bad Astronomy: Misconceptions and Misuses Revealed, from Astrology to the Moon Landing "Hoax". John Wiley and Sons. с. 55—56.
  77. Kieron Taylor (1 March 1994). Precession. Sheffield Astronomical Society. Процитовано 6 серпня 2013.
  78. Strous, Louis (2010). Astronomy Answers: Modern Calendars. University of Utrecht. Процитовано 14 September 2011.
  79. Laskar, J. та ін. (1993). Orbital, Precessional, and Insolation Quantities for the Earth From −20 Myr to +10 Myr. Astronomy and Astrophysics. 270: 522—533. Bibcode:1993A&A...270..522L.
  80. Laskar та ін. Astronomical Solutions for Earth Paleoclimates. Institut de mecanique celeste et de calcul des ephemerides. Процитовано 20 July 2012. {{cite web}}: Явне використання «та ін.» у: |author= (довідка)
  81. Aldo Vitagliano (2011). The Solex page. Università degli Studi di Napoli Federico II. Процитовано 20 July 2012.
  82. Julian Date Converter. US Naval Observatory. Процитовано 20 July 2012.
  83. а б Hurtling Through the Void. Time Magazine. 20 June 1983. Процитовано 5 September 2011.
  84. Cornell News: "It's the 25th Anniversary of Earth's First (and only) Attempt to Phone E.T." Cornell University. 12 November 1999. Архів оригіналу за 2 August 2008. Процитовано 29 March 2008.
  85. Pioneer 10 Spacecraft Nears 25TH Anniversary, End of Mission. nasa.gov. Процитовано 22 грудня 2013.
  86. SPACE FLIGHT 2003 – United States Space Activities. nasa.gov. Процитовано 22 грудня 2013.
  87. а б Voyager: The Interstellar Mission. NASA. Процитовано 5 September 2011.
  88. KEO FAQ. keo.org. Процитовано 14 October 2011.
  89. а б The Pioneer Missions. NASA. Процитовано 5 September 2011.
  90. LAGEOS 1, 2. NASA. Процитовано 21 July 2012.
  91. The Long Now Foundation. The Long Now Foundation. 2011. Процитовано 21 September 2011.
  92. Carter, Brandon; McCrea, W. H. (1983). The anthropic principle and its implications for biological evolution. Philosophical Transactions of the Royal Society of London. A310 (1512): 347—363. Bibcode:1983RSPTA.310..347C. doi:10.1098/rsta.1983.0096.
  93. Kaku, Michio (2010). The Physics of Interstellar Travel: To one day, reach the stars. mkaku.org. Процитовано 29 August 2010.
  94. Crawford, I. A. (July 2000). Where are They? Maybe we are alone in the galaxy after all. Scientific American. Процитовано 20 July 2012.

Помилка цитування: Тег <ref> з назвою "Nave", визначений у <references>, не використовується в попередньому тексті.
Помилка цитування: Тег <ref> з назвою "Komatsu", визначений у <references>, не використовується в попередньому тексті.

Помилка цитування: Тег <ref> з назвою "five ages pp85–87", визначений у <references>, не використовується в попередньому тексті.


Помилка цитування: Теги <ref> існують для групи під назвою «lower-alpha», але не знайдено відповідного тегу <references group="lower-alpha"/>