Обернені гіперболічні функції

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук

Обернені гіперболічні функції — визначаються як обернені функції до гіперболічних функцій. Ці функції визначають площу сектора одиничної гіперболи x2y2 = 1 аналогічно до того, як обернені тригонометричні функції визначають довжину дуги одиничного кола x2 + y2 = 1. Для цих функцій часто використовуються позначення arcsinh, arcsh, arccosh, arcch і т.д., хоча таке позначення є загалом помилковим, оскільки arc є скороченням від arcus — дуга, тоді як префікс ar означає area — площа. Тож правильними є позначення arsinh, arsh і т.д. і назви гіперболічний ареасинус, гіперболічний ареакосинус і т.д.

Визначення функцій[ред.ред. код]

Гіперболічний ареасинус для дійсного аргумента
Гіперболічний ареакосинус для дійсного аргумента
Гіперболічний ареатангенс для дійсного аргумента
Гіперболічний ареакотангенс для дійсного аргумента
Гіперболічний ареасеканс для дійсного аргумента
Гіперболічний ареакосеканс для дійсного аргумента

В комплексній площині функції можна визначити формулами:

  • Гіперболічний ареасинус

 \operatorname{arsinh}\, z = \ln(z + \sqrt{z^2 + 1} \,),
  • Гіперболічний ареакосинус
\operatorname{arcosh}\, z = \ln(z + \sqrt{z+1} \sqrt{z-1} \,),
  • Гіперболічний ареатангенс
\operatorname{artanh}\, z = \tfrac12\ln(\frac{1+z}{1-z}).
  • Гіперболічний ареакотангенс
\operatorname{arcoth}\, z = \tfrac12\ln(\frac{z+1}{z-1}).
  • Гіперболічний ареасеканс
\operatorname{arcsch}\, z = \ln\left( \frac{1}{z} + \sqrt{ \frac{1}{z^2} +1 } \,\right),
  • Гіперболічний ареакосеканс
\operatorname{arsech}\, z = \ln\left( \frac{1}{z} + \sqrt{ \frac{1}{z} + 1 } \, \sqrt{ \frac{1}{z} -1 } \,\right).

Квадратними коренями в цих формулах є головні значення квадратного кореня і логарифмічні функції є функціями комплексної змінної. Для дійсних аргументів можна здійснити деякі спрощення, наприклад \sqrt{x+1}\sqrt{x-1}=\sqrt{x^2-1}, що не завжди вірно для головних значень квадратних коренів.

Розклад в ряди[ред.ред. код]

Обернені гіперболічні функції можна розкласти в ряди:

\begin{align}\operatorname{arsinh}\, x & = x - \left( \frac {1} {2} \right) \frac {x^3} {3} + \left( \frac {1 \cdot 3} {2 \cdot 4} \right) \frac {x^5} {5} - \left( \frac {1 \cdot 3 \cdot 5} {2 \cdot 4 \cdot 6} \right) \frac {x^7} {7} +\cdots \\
                       & = \sum_{n=0}^\infty \left( \frac {(-1)^n(2n)!} {2^{2n}(n!)^2} \right) \frac {x^{2n+1}} {(2n+1)} , \qquad \left| x \right| < 1  \end{align}
\begin{align}\operatorname{arcosh}\, x & = \ln 2x - \left( \left( \frac {1} {2} \right) \frac {x^{-2}} {2} + \left( \frac {1 \cdot 3} {2 \cdot 4} \right) \frac {x^{-4}} {4} + \left( \frac {1 \cdot 3 \cdot 5} {2 \cdot 4 \cdot 6} \right) \frac {x^{-6}} {6} +\cdots \right) \\
                      & = \ln 2x - \sum_{n=1}^\infty \left( \frac {(2n)!} {2^{2n}(n!)^2} \right) \frac {x^{-2n}} {(2n)} , \qquad x > 1 \end{align}
\begin{align}\operatorname{artanh}\, x & = x + \frac {x^3} {3} + \frac {x^5} {5} + \frac {x^7} {7} +\cdots \\
                      & = \sum_{n=0}^\infty \frac {x^{2n+1}} {(2n+1)} , \qquad \left| x \right| < 1 \end{align}
\begin{align}\operatorname{arcsch}\, x = \operatorname{arsinh} \frac1x & = x^{-1} - \left( \frac {1} {2} \right) \frac {x^{-3}} {3} + \left( \frac {1 \cdot 3} {2 \cdot 4} \right) \frac {x^{-5}} {5} - \left( \frac {1 \cdot 3 \cdot 5} {2 \cdot 4 \cdot 6} \right) \frac {x^{-7}} {7} +\cdots \\
                      & = \sum_{n=0}^\infty \left( \frac {(-1)^n(2n)!} {2^{2n}(n!)^2} \right) \frac {x^{-(2n+1)}} {(2n+1)} , \qquad \left| x \right| > 1 \end{align}
\begin{align}\operatorname{arsech}\, x = \operatorname{arcosh} \frac1x & = \ln \frac{2}{x} - \left( \left( \frac {1} {2} \right) \frac {x^{2}} {2} + \left( \frac {1 \cdot 3} {2 \cdot 4} \right) \frac {x^{4}} {4} + \left( \frac {1 \cdot 3 \cdot 5} {2 \cdot 4 \cdot 6} \right) \frac {x^{6}} {6} +\cdots \right) \\
                      & = \ln \frac{2}{x} - \sum_{n=1}^\infty \left( \frac {(2n)!} {2^{2n}(n!)^2} \right) \frac {x^{2n}} {2n} , \qquad 0 < x \le 1 \end{align}
\begin{align}\operatorname{arcoth}\, x = \operatorname{artanh} \frac1x & = x^{-1} + \frac {x^{-3}} {3} + \frac {x^{-5}} {5} + \frac {x^{-7}} {7} +\cdots \\
                      & = \sum_{n=0}^\infty \frac {x^{-(2n+1)}} {(2n+1)} , \qquad \left| x \right| > 1 \end{align}

Asymptotic expansion for the arsinh x is given by

\operatorname{arsinh}\, x = \ln 2x + \sum\limits_{n = 1}^\infty  {\left( { - 1} \right)^{n - 1} \frac{{\left( {2n - 1} \right)!!}}{{2n\left( {2n} \right)!!}}} \frac{1}{{x^{2n} }}

Похідні[ред.ред. код]


\begin{align}
\frac{d}{dx} \operatorname{arsinh}\, x & {}= \frac{1}{\sqrt{1+x^2}}\\
\frac{d}{dx} \operatorname{arcosh}\, x & {}= \frac{1}{\sqrt{x^2-1}}\\
\frac{d}{dx} \operatorname{artanh}\, x & {}= \frac{1}{1-x^2}\\
\frac{d}{dx} \operatorname{arcoth}\, x & {}= \frac{1}{1-x^2}\\
\frac{d}{dx} \operatorname{arsech}\, x & {}= \frac{-1}{x(x+1)\,\sqrt{\frac{1-x}{1+x}}}\\
\frac{d}{dx} \operatorname{arcsch}\, x & {}= \frac{-1}{x^2\,\sqrt{1+\frac{1}{x^2}}}\\
\end{align}

Для дійсних x:


\begin{align}
\frac{d}{dx} \operatorname{arsech}\, x & {}= \frac{\mp 1}{x\,\sqrt{1-x^2}}; \qquad \Re\{x\} \gtrless 0\\
\frac{d}{dx} \operatorname{arcsch}\, x & {}= \frac{\mp 1}{x\,\sqrt{1+x^2}}; \qquad \Re\{x\} \gtrless 0
\end{align}

Приклад диференціювання: якщо θ = arsinh x, то:

\frac{d\,\operatorname{arsinh}\, x}{dx} = \frac{d \theta}{d \sinh \theta} = \frac{1} {\cosh \theta} = \frac{1} {\sqrt{1+\sinh^2 \theta}} = \frac{1}{\sqrt{1+x^2}}

Композиція гіперболічних і обернених гіперболічних функцій[ред.ред. код]

\begin{align}
 &\operatorname{sinh}(\operatorname{arcosh}\,x) = \sqrt{x^{2} - 1}  \quad \text{for} \quad |x| > 1 \\
 &\operatorname{\sinh}(\operatorname{artanh}\,x) = \frac{x}{\sqrt{1-x^{2}}} \quad \text{for} \quad -1 < x < 1 \\
 &\operatorname{\cosh}(\operatorname{arsinh}\,x) = \sqrt{1+x^{2}} \\
 &\operatorname{\cosh}(\operatorname{artanh}\,x) = \frac{1}{\sqrt{1-x^{2}}} \quad \text{for} \quad -1 < x < 1 \\
 &\operatorname{\tanh}(\operatorname{arsinh}\,x) = \frac{x}{\sqrt{1+x^{2}}} \\
 &\operatorname{\tanh}(\operatorname{arcosh}\,x) = \frac{\sqrt{x^{2} - 1}}{x} \quad \text{for} \quad |x| > 1
\end{align}

Додаткові формули[ред.ред. код]

\operatorname{arsinh} \;u \pm \operatorname{arsinh} \;v = \operatorname{arsinh} \left(u \sqrt{1 + v^2} \pm v \sqrt{1 + u^2}\right)
\operatorname{arcosh} \;u \pm \operatorname{arcosh} \;v = \operatorname{arcosh} \left(u v \pm \sqrt{(u^2 - 1) (v^2 - 1)}\right)
\operatorname{artanh} \;u \pm \operatorname{artanh} \;v = \operatorname{artanh} \left( \frac{u \pm v}{1 \pm uv} \right)
\begin{align}\operatorname{arsinh} \;u + \operatorname{arcosh} \;v & = \operatorname{arsinh} \left(u v + \sqrt{(1 + u^2) (v^2 - 1)}\right) \\
                                                                          & = \operatorname{arcosh} \left(v \sqrt{1 + u^2} + u \sqrt{v^2 - 1}\right) \\
\operatorname{arch}(2u^2-1) &= 2\operatorname{arch} u \\
\operatorname{arch}(2u^2+1) &= 2\operatorname{arsh} u

\end{align}

Див. також[ред.ред. код]

Джерела[ред.ред. код]

  • Herbert Busemann, Paul J. Kelly (1953) Projective Geometry and Projective Metrics, с. 207, Academic Press.

Посилання[ред.ред. код]