Зв'язаний простір

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Зв'язані і незв'язані простори в R². Простір A зверху є зв'язним; затемнений простір B внизу — не є.

Зв'язаний простіртопологічний простір, який не може бути представлений у вигляді об'єднання без перетинів двох непорожніх відкритих просторів. Зв'язаність є однією з основних топологічних властивостей, що застосовуються для розрізнення топологічних просторів.

Зазвичай достатньо просто думати про те, що не є зв'язаним. Простим прикладом може бути простір, що складається з двох прямокутників, кожен з яких є простором, і не перетинається з іншим. Простір не є зв'язаним, тому що два прямокутники не зв'язані. Можна також навести ще один простий приклад простору, в якому вирізали кільце. Простір не є зв'язаним тому що ми не можемо з'єднати дві точки, одна з яких лежить у кільці, а інша ззовні.

Формальне означення[ред.ред. код]

Наступні означення є еквівалентні між собою. Топологічний простір називається зв'язним, якщо:

  1. Єдиними одночасно відкритими і замкнута множинами є лише та
  2. не може бути подана як об'єднання двох не порожніх розділених множин
  3. не може бути поділена на дві замкнені непорожні множини без перетинів
  4. Єдиними множинами, границя яких є пустою є лише та

із стандартною є зв'язаним топологічним простором.