Відкрита множина

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук

Відкри́та множина́ — в математичному аналізі, геометрії — це множина, кожна точка якої входить в неї разом з деяким околом. Відкрита множина є фундаментальним поняттям загальної топології.

Евклідовий простір[ред.ред. код]

Підмножина евклідового простору називається відкритою, якщо:

де — ε-окіл точки

Іншими словами, множина є відкритою, якщо кожна її точка є внутрішньою.

Метричний простір[ред.ред. код]

Якщо — деякий метричний простір, і . Тоді є відкритою, якщо:

, де ε-окіл точки відносно метрики .

Топологічний простір[ред.ред. код]

Якщо топологічний простір, де топологія, визначена на , то за визначенням топологічного простору будь-яка підмножина , що є елементом топології, тобто , буде відкритою множиною відносно цієї топології.

Див. також[ред.ред. код]

Джерела[ред.ред. код]