Циклотронна маса

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку

Циклотронна маса — узагальнена маса (спільна для всього твердого тіла) носіїв струму при їх русі в магнітному полі. В загальному випадку ця маса не збігається з ефективною масою носіїв, оскільки поверхня Фермі може бути анізотропною, а ефективна маса приймати вигляд тензора. Циклотронну масу вимірюють за допомогою методу циклотронного резонансу або магнітотранспортних методів (ефект Шубникова — де Гааза). Знання циклотронної маси інколи допомагає визначити форму поверхні Фермі в твердому тілі.


Тривимірний випадок [1][ред. | ред. код]

Поверхня Фермі тривимірного кристалу, наприклад кремнію, которий є непрямозонним напівпровідником, складається з шести еліпсоїдів обертання в k-просторі. Розглянемо переріз поверхні Фермі площиною XZ такий, що в цій площині будуть знаходитися 4 витягнуті еліпси з центрами розташованими на осях на віддалі . Нехай вектор магнітного поля лежить в цій площині та створює кут з віссю Z. Анізотропний закон дисперсії для електронів має вигляд:

де введені дві різні ефективні маси , , які називаються відповідно повздовжною та поперечною ефективними масами. Рівняння руху частки (другий закон Ньютона) із зарядом «-e» в магнітному полі при відсутності затухання

де — хвильовий вектор, а швидкість частки визначається виразом:

Тепер розглянемо покомпонентно закон руху:

Нас буде цікавити тільки розв’язки виду:

Цей розв’язок існує при певній частоті, котра називається циклотронною, котра залежить від кута:

Тут можна визначити циклотронну масу як

Видно, що якщо кут рівний нулю, то , а якщо кут прямий: .

Загальний випадок тривимірного простору[ред. | ред. код]

В загальному випадку[2] для довільної поверхні Фермі, наприклад в металах поверхня Фермі може приймати складну форму і тому необхідно використовувати наступну формулу для циклотронної частоти

та циклотронної маси:

де — площа поверхні Фермі.


Випадок параболічної зони[ред. | ред. код]

Для найпростішої ізотропної параболічної зони (по Рідлі) енергію та можна представити у вигляді наступних функцій від хвильового вектора:

.

В цьому випадку похідна від енергії по площі буде мати найпростіший вигляд:

.

Подставляючи отримані значення для похідної в формулу для ефективної маси, знаходимо:

.

Таким чином, у випадку простої ізотропної параболічної зони ми будемо мати тотожність фізичних величин - "циклотронної маси" та "ефективної маси". Дана обставина і дозволяє в більшості випадків вимірювати ефективну масу носіїв в твердому тілі.

Циклотронна швидкість[ред. | ред. код]

В загальному випадку циклотрона швидкість записується в наступному вигляді:

,

де у випадку традиційних тривимірних напівпровідників циклотронний радіус та маса визначаються як:

, ,

а у випадку двовимірного графена:

, ,

де - магнітна довжина. Таким чином, в звичайному тривимірному напівпровіднику, в якому виконується умова постійної ефективної маси, ми будемо мати змінне значення для циклотронної швидкості (наприклад, в КЕХ):

.

Інша справа - двовимірний графен. Оскільки ефективна маса його носіїв змінюється, то його циклотрона швидкість завжди постійна:

Використавши це, ми можемо через неї визначити і циклотронну частоту:

та циклотронну масу:

.

Таким чином, за межами розгляду елементів зонної структури та циклотронної маси, лишилась постійна швидкість . Звідки вона взялася, і який її масштаб?

Експериментальне обґрунтування постійності циклотронної швидкості в графені[ред. | ред. код]

Найточніше значення постійної швидкості носіїв струму в графені було знайдено Діаконом та інш. в експериментах по відгуку фотопровідності на взірцях графена з декількома рівнями Ландау[3].

Це експериментальне значення швидкості для різних рівней Ландау знаходилося в діапазоні значень:

.

Не важко помітити, що посередині цього діапазону знаходиться єдина фізична величина швидкості, яка називається борівською, оскільки визначає швидкість циклічного руху електрону на першій борівській орбіті атома Бора:

.

На сьогодні рівність цих швидкостей

виконується з точністю до двох процентів:

.

Безумовно в подальшому точність зросте, проте на скільки, поки що не відомо.

Див. також[ред. | ред. код]

Примітки[ред. | ред. код]

  1. Hook J. R. pp. 158-159.
  2. Hook J. R. p. 375.
  3. R.S. Deacon, K-C. Chuang, R. J. Nicholas, K.S. Novoselov, and A.K. Geim. «Cyclotron Resonance study of the electron and hole velocity in graphene monolayers». arXiv:0704.0410v3

Література[ред. | ред. код]

Hook J. R., Hall H. E. Solid State Physics. — 2-nd ed. — Chichester : John Wiley & Sons, 1997. — С. 158-159. — ISBN 0-471-92805-4.

Ридли Б. Квантовые процессы в полупроводниках. — Москва : Мир, 1986. — С. 63-64. — ISBN УДК 537.33+535.2.

Посилання[ред. | ред. код]

  • Физическая энциклопедия, т.5 — М.:Большая Российская Энциклопедия стр.429