Множина Віталі

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку

Множина́ Віта́лі — історично перший приклад множини, що не має міри Лебега (невимірна множина). Цей приклад опублікував 1905 року італійський математик Джузепе Віталі.

Історія[ред. | ред. код]

1902 року Анрі Лебег у своїх лекціях «Leçons sur l'intégration et la recherche des fonctions primitives», сформулював теорію міри і гадав, що вона може бути застосована до довільної обмеженої множини. Але поява контрприкладів розвіяла ці сподівання. Побудова таких невимірних множин завжди спирається на аксіому вибору.

Побудова[ред. | ред. код]

Введемо відношення еквівалентності на відрізку :

раціональним числом).

Виберемо із кожного класу еквівалентності по одному елементу (тут ми користуємося аксіомою вибору), отримана множина буде невимірною.

Справді, якщо зсунути множину зліченне число раз на всі раціональні числа з відрізка , то об'єднання таких множин буде включати в себе весь відрізок і саме буде включене у відрізок .

Припустимо, що множина має міру Лебега, тоді можливі 2 випадки:

  • Міра рівна нулю. Тоді міра відрізка (як зліченного об'єднання множин міри нуль) теж дорівнює нулю.
  • Міра більша нуля. Тоді, аналогічно, міра відрізка буде нескінченною.

В обох випадках отримуємо суперечність. Отже, множина Віталі не має міри Лебега.

Джерела[ред. | ред. код]