Відношення еквівалентності

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук

Відно́шення еквівале́нтності () на множині  — це бінарне відношення для якого виконуються наступні умови:

  1. Рефлексивність: для будь-якого в ,
  2. Симетричність: якщо , то ,
  3. Транзитивність: якщо та , то .

Запис вигляду «» читається як « еквівалентно ».

Пов'язані визначення[ред.ред. код]

  • Класом еквівалентності елемента називається підмножина елементів, еквівалентних . З зазначеного визначення випливає що, якщо , то .

Множина всіх класів еквівалентності позначається .

  • Для класу еквівалентності елемента використовується наступне позначення: , , .
  • Множина класів еквівалентності по відношенню є розбиттям множини.

Приклади відношень еквівалентності[ред.ред. код]

  • Найбільш наочний приклад відношення еквівалентності — поділ учнів школи на класи.
  • Відношення рівності») тривіальне відношення еквівалентності на довільній множині, зокрема на множині дійсних чисел.
  • Порівняння по модулю, («а ≡ b (mod n)»).
  • В Евклідовій геометрії
  • Відношення рівнопотужності множин є відношенням еквівалентності.
  • Еквівалентність функцій в математичному аналізі:
    кажуть що функція еквівалентна функції при , якщо вона може бути представлена у вигляді: де при . В даному випадку пишуть , при . Якщо при , еквівалентність функції та при , очевидно, рівносильна відношенню .

Факторизація відображень[ред.ред. код]

Множина класів еквівалентності, яка відповідає відношенню еквівалентності , позначається символом і називається фактормножиною відносно . При цьому сюр'єктивне відображення

називається дійсним відображенням (чи канонічною проекцією) на фактормножену .

Нехай ,  — множини,  — відображення, тоді бінарне відношення визначене правилом

є відношенням еквівалентності на . При цьому відображення утворює відображення , яке визначається правилом

чи

.

При цьому отримується факторизація відображення на сюр'єктивне відображення та ін'ективне відображення .

Факторизація відображень широко використовується в гуманітарних науках та в тих галузях техніки де немає можливостей використовувати числові значення. Вона дозволяє уникати формул там, де їх неможливо використати. Наведемо загально відомий всім приклад:

Розклад уроків в школі — є типовий приклад факторизації. В даному випадку  — множина всіх учнів школи,  — множина всіх предметів, упорядкованих по днях тижня та часом їх проведення. Класами еквівалентності є класи (групи учнів). Відображення  — розклад уроків записаних у щоденники учнів. Відображення  — розклад уроків по класам, який вивішують у вестибюлі школи. Там же і вивішується відображення  — списки класів. Цей простий приклад наочно демонструє практичні вигоди факторизації: неможливо собі уявити розклад занять як таблицю в якій занесені всі учні школи в особистому порядку. Факторизація дозволила зобразити потрібну учням інформацію у зручному для використання вигляді в ситуації коли формули застосовувати неможливо.

На цьому переваги факторизації не закінчується. Вона дала можливість розділити роботу між людьми: завуч складає розклад, а учні записують його у щоденники. Аналогічно факторизація дозволила розділити роботу медика, який ставить діагноз та виписує рецепт, і фармацевта який еквівалентно рецепту підбирає ліки. Апофеозом факторизації є конвеєр, де реалізоване максимальне розбиття праці за рахунок стандартизації деталей.

Факторизація дозволила забезпечити модульність сучасної техніки. Наприклад, можна замінити телефон але залишити сім-карту і карту пам'яті зі старого телефону, або поміняти оперативну пам'ять в комп'ютері більше нічого не чіпаючи. Все це гнучкість і модульність в основі яких лежить факторизація.

Фактормножина та класи еквівалентності[ред.ред. код]

Сукупність множин {Bi|i∈I} називається розбиттям множини A, якщо Bi=A і Bi∩Bj = ∅ для i≠j. Множини Bi, i∈I є підмножинами множини A і називаються класами, суміжними класами, блоками або елементами розбиття. Очевидно, що кожний елемент a∈A належить одній і тільки одній множині Bi, i∈I.

Нехай тепер на множині M задано відношення еквівалентності R. Виконаємо таку побудову. Виберемо деякий елемент a∈M і утворимо підмножину SaR = {x| x∈M і aRx}, яка складається з усіх елементів множини M, еквівалентних елементу a. Візьмемо другий елемент b∈M такий, що b∉SaR і утворимо множину SbR = {x | x∈M і bRx } з елементів еквівалентних b і т. д. Таким чином одержимо сукупність множин (можливо, нескінченну) {SaR, SbR,…}.

Побудована сукупність множин { SiR | i∈I} є фактормножиною множини M за еквівалентністю R і позначається M/R.

Очевидно, що будь-які два елементи з одного класу SiR еквівалентні між собою, в той час як будь-які два елементи з різних класів фактормножини M/R нееквівалентні.

Класи SiR називають класами еквівалентності за відношенням R. Клас еквівалентності, який містить елемент a∈M часто позначають через [a]R.

Див. також[ред.ред. код]

Джерела[ред.ред. код]

  • А. И. Кострикин, Введение в алгебру. М.: Наука, 1977, 47—51.
  • А. И. Мальцев, Алгебраические системы, М.: Наука, 1970, 23—30.
  • В. В. Иванов, Математический анализ. НГУ, 2009.