В математичній оптимізації, умовна оптимізація — це процес оптимізації цільової функції щодо деяких змінних за наявності обмежень на ці змінні. Цільова фукнція це або функція втрат або функція енергії, яку треба мінімізувати, або функція винагороди або функція корисності, яку треба максимізувати. Обмеження це або жорсткі обмеження, які встановлюють умови на змінні, які мають бути дотримані, або м'які обмеження, які встановлють штрафи на деякі значення змінних в цільовій функції, якщо (і наскільки) ці обмеження не дотримані.
Нехай — відкрита множина і на G задані функції . Позначимо через таку, що , де рівняння називають рівняннями зв'язків.
Нехай на G визначена функція . Точка називається точкою умовного екстремуму функції щодо рівнянь зв'язку, якщо вона є точкою звичайного екстремуму на множині E (розглядаються околи ).
Припустимо, що неперервно диференційовні, і нехай - точка умовного екстремуму функції при виконанні рівнянь зв'язків. Тоді в цій точці градієнти є лінійно залежні, тобто але .
Якщо - точка умовного екстремуму функції відносно рівнянь зв’язку, то такі, що в точці або в координатному вигляді .
Нехай — це стаціонарна точка функції Лагранжа при . Якщо - від'ємно (додатнью) визначена квадратична форма змінних при умові , то є точкою max (min для додатньо визначенної) умовного екстремуму. Якщо вона за цих умов не є знаковизначенною, тоді екстремуму немає.