Алгебраїчне доповнення

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук

Нехай квадратна матриця порядку , в якій вибрано:

  • довільні рядків з номерами та
  • довільні стовпців з номерами

Визначення[ред.ред. код]

Алгебраїчне доповнення мінора визначається так:

де

 — доповнювальний мінор.

Алгебраїчним доповненням елемента називають мінор цього елемента, взятий зі знаком тобто

Приклади[ред.ред. код]

  • Мінор квадратної матриці визначник матриці, отриманий шляхом викреслювання рядка 2 та стовпчика 3:
  • Знайти алгебраїчні доповнення елементів а21 та а33 визначника

Розв'язок:

Алгебраїчні доповнення до елементів а21 та а33 позначимо А21 та А33, відповідно.

Знаходження мінорів:

Находження мінорів.jpg

Підставимо ці значення мінорів у відповідні рівності (4), одержимо шукані алгебраїчні доповнення

А21=(-1)2+1 М21= -13
А33=(-1)3+3 М33= 5

Див. також[ред.ред. код]

Джерела[ред.ред. код]