Евклідова геометрія

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Запит «Планіметрія» перенаправляє сюди; див. також інші значення.
Фрагмент роботи Рафаеля Афінська школа із зображенням грецького математика – можливо Евкліда чи Архімеда (використовує циркуль для нанесення геометричної конструкції)

Евклі́дова геоме́трія — геометрична теорія, заснована на системі аксіом, вперше викладеній у підручнику «Началах» Евкліда (давньогрецькою: Στοιχεῖα Stoicheia, III століття до н. е.). Метод Евкліда полягає в припущенні невеликого набору оскаржених аксіом і виведення з них багатьох інших теорем. Хоча багато визначень Евкліда були висловлені іншими математиками, Евклід був першим, хто показав, як ці пропозиції могли б використовуватися у всеосяжних дедуктивній та логічній системах. Начала починаються з планіметрії, яка і до сьогодні вивчається у середній школі як аксіоматика і базується на доведеннях. Це йде до стереометрії. Більша частина «Начал» вказує на доведення того, що зараз називають алгеброю та теорією чисел.

Більше двох тисяч років прикметник "евклідова" був непотрібним, оскільки жодна інша форма геометрії ще не існувала. Аксіоми Евкліда здавались настільки очевидними (за винятком паралельного постулату), що будь-яка теорема, що випливала з них, вважалася вірною в абсолютному, часто метафізичному сенсі. Сьогодні відомо багато інших несуперечливостей неевклідової геометрії, перші з яких з'явилися на початку 19 ст. Прикладом із загальної теорії відносності Альберта Ейнштейна є те, що сам фізичний простір не евклідовський, а евклідовий простір для нього існує лише там, де слабке гравітаційне поле.

Евклідова геометрія є прикладом аналітичної геометрії, оскільки вона логічно йде від аксіом до тверджень без використання координат(на відміну від аналітичної геометрії, яка їх використовує).

Начала[ред.ред. код]

Докладніше: Начала Евкліда

Начала вважаються систематизацією попередніх знань з геометрії. Оскільки його новіші видання були одразу загальновизнаними, і було мало зацікавлення у минулих версіях, на сьогодні майже всі вони втрачені. Начала складаються з 13 книг: У I-IV та VI книгах йдеться про планіметрію. Доведено багато результатів щодо плоских фігур, наприклад: теорема Піфагора "У прямокутному трикутнику сума квадратів катетів дорівнює квадрату гітотенузи". (Книга I, постулат 47). V і VII-X книги стосуються теорії чисел, причому числа геометрично обробляються через їхні подання у вигляді ліній різної довжини. У них вводяться такі поняття, як прості числа, раціональні та ірраціональні числа. Також доводиться нескінченність простих чисел. XI-XIII книги стосуються cтереометрії. Типовим прикладом є співвідношення 1/3 між об'ємом конуса та циліндра з однаковою висотою та основою.

Аксіоматика[ред.ред. код]

Про паралельні прямі (Постулат 5): Якщо пряма, що перетинає дві інші прямі, утворює внутрішні односторонні кути, які менші, ніж два прямі кути, то ці дві прямі перетнуться як завгодно далеко з тієї сторони, де кути (давньогрецькою:Καὶ ἐὰν εἰς δύο εὐθείας εὐθεῖα ἐμπίπτουσα τὰς ἐντὸς καὶ ἐπὶ τὰ αὐτὰ μέρη γωνίας δύο ὀρθῶν ἐλάσσονας ποιῇ, ἐκβαλλομένας τὰς δύο εὐθείας ἐπ' ἄπειρον συμπίπτειν, ἐφ' ἃ μέρη εἰσὶν αἱ τῶν δύο ὀρθῶν ἐλάσσονες).

Проблема повної аксіоматизації елементарної геометрії — одна з проблем геометрії, що виникла у Стародавній Греції у зв'язку з критикою цієї першої спроби побудувати повну систему аксіом так, щоб всі твердження евклідової геометрії з цих аксіом були чисто логічним висновком без унаочнювальних креслень.

У «Початках» Евкліда, була дана наступна аксіоматика:

  1. Від усякої точки до всякої точки можна провести пряму лінію.
  2. Обмежену лінію можна безперервно продовжувати до прямої.
  3. З усякого центра довільним розхилом циркуля може бути описане коло.
  4. Усі прямі кути рівні між собою.
  5. Якщо пряма, що перетинає дві прямі, утворює внутрішні односторонні кути, які менші ніж два прямі кути, то ці дві прямі, продовжені необмежено, зустрінуться з тієї сторони, де кути менші за два прямі (
).

Дослідження системи аксіом Евкліда в другій половині XIX століття показало її неповноту. У 1899 році Давид Гільберт запропонував першу достатньо строгу аксіоматику евклідової геометрії. Спроби поліпшення евклідової аксіоматики робилися і до Гільберта, проте підхід Гільберта, при всій його консервативності у виборі понять, виявився найуспішнішим.

Див. також[ред.ред. код]


Сигма Це незавершена стаття з математики.
Ви можете допомогти проекту, виправивши або дописавши її.