Синтаза оксиду азоту

Матеріал з Вікіпедії — вільної енциклопедії.
(Перенаправлено з NO-синтаза)
Перейти до навігації Перейти до пошуку
Нейрональна синтаза оксиду азоту
Ідентифікатори
Символ NOS1
Інші символи nNOS
Номер CAS 125978-95-2
Entrez 4842
HUGO 7872
OMIM 163731
UniProt P29475
Інша інформація
Шифр КФ 1.14.13.39
Локус Хр. 12 q14qter
Індуцибельна синтаза оксиду азоту
Ідентифікатори
Символ NOS2
Інші символи iNOS
Номер CAS 125978-95-2
Entrez 4843
HUGO 7873
OMIM 163730
UniProt P35228
Інша інформація
Шифр КФ 1.14.13.39
Локус Хр. 17 q11.2
Ендотеліальна синтаза оксиду азоту
Ідентифікатори
Символ NOS3
Інші символи eNOS
Номер CAS 125978-95-2
Entrez 4846
HUGO 7876
OMIM 163729
UniProt P29474
Інша інформація
Шифр КФ 1.14.13.39
Локус Хр. 7 q36

Синтази оксиду азоту, NO-синтази (скорочено NOS, від англ. Nitric oxide synthase) — родина ферментів, що забезпечують синтез Нітроген (II) оксиду (NO) із l-аргініну. NO відіграє роль у багатьох фізіологічних процесах, таких як регуляція скорочення гладеньких м'язів, передача нервових імпульсів, забезпечення імунної відповіді. У ссавців наявні три ізоформи NO-синтази: ендотеліальна eNOS (також NOS3), нейрональна nNOS (також NOS1) й індуцибельна iNOS (також NOS2). Перші дві конститутивно експресуються у відповідних типах клітин і активуються у разі підвищення цитоплазматичної концентрації кальцію. Синтез iNOS індукуються тільки за певних умов, проте вона є кальцій-незалежною.

Структура ферментів[ред. | ред. код]

Ізоферменти NO-синтази мають від 50 до 60 % ідентичності амінокислотних послідовностей. Всі вони є гомодимерними білками із субодиницями від 125 до 160 кДа. Кожна субодиниця має два домени:

  1. N-кінцевий домен, який також називають оксигеназним або гемовим, складається із приблизно 500 амінокислотних залишків і має близьку структуру у трьох ізоферментів NO-синтази. Він каталізує обидві стадії реакції деамінування аргініну, а також містить поверхню взаємодії субодиниць. Тут відбувається зв'язування субстратів: l-аргініну та кисню, а також двох простетичних груп: Fe(III)-гему і 5,6,7,8-тетрагідробіоптерину (H4B)[1].
  2. C-кінцевий або редуктазний домен складається із близько 600 амінокислотних залишків і забезпечує реакцію синтезу NO електронами. Він приєднує НАДФH, а також дві простетичні групи: ФАД та ФМН, завдяки трьом нуклеотид-зв'язуючим модулям. Цей домен гомологічний до цитохром P450 редуктази[1].

Хід реакції[ред. | ред. код]

Синтез оксиду азоту відбувається у дві стадії, проміжним продуктом є Nω-гідрокси-l-аргінін (NOHA). На першому етапі НАДФН приєднаний до редуктазного домену передає два електрони через ФАД та ФМН до гему оксигеназного домену іншої субодиниці, після чого відбувається реакція з киснем, продуктами якої є NOHA і вода. У другій стадії використовується тільки один електрон НАДФН (так, що для синтезу однієї молекули NO необхідно 3/2 НАДФН) і ще одна молекула кисню. Кінцевими продуктами є Нітроген (II) оксид, l-цитрулін та вода. Для проходження обидвох етапів реакції необхідна наявність H4B, що функціонує як внутрішній редокс агент. Як під час утворення NOHA, так і під час утворення NO, він спочатку окиснюється до радикальної форми (H4B•+), а потім знову відновлюється[2].

Ізоформи[ред. | ред. код]

Три форми NO-синтази в організмі ссавців мають різні функції, особливості експресії в різних тканинах, та регулюються різним чином. Перша NO-синтаза була виділена із нейронів, тому вона має назву нейрональна, проте вона також наявна у скелетних м'язах, нейтрофілах, острівцях підшлункової залози, ендотелії, а також епітелії дихальних шляхів і травного тракту. Друга — індуцибельна — форма була виділена із макрофагів, проте може експресуватись у дуже багатьох різних типах клітин. Ендотеліальна NOS, окрім ендотеліоцитів, була виявлена також і в нейронах[3].

Кальцій-залежні NO-синтази[ред. | ред. код]

Ендотеліальна та нейрональна форми синтази оксиду азоту експресуються конститутивно. Вони активуються кальцій-кальмодуліном, який приєднується до ділянки довжиною 30 амінокислот, що з'єднує оксигеназний та редуктазний домени субодиниць[4]. Через кальцій-залежність ці ізоформи інколи позначають буквою c (ecNOS, ncNOS). Період активності eNOS та nNOS після стимуляції триває хвилини, eNOS також характеризується меншою у порівнянні з іншими ізоформами максильмальною швидкістю каталізу (Vmax). Ендотеліальна та нейрональна NO-синтази задіяні у таких процесах як проведення нервових імпульсів, забезпечення перистальтики та миттєва регуляція кров'яного тиску[3]. Наприклад, такі фактори як ацетилхолін та брадикінін активують фосфоінозитидний сигнальний шлях в клітинах ендотелію, що призводить до підвищення цитоплазматичної концентрації Ca2+. Внаслідок цього відбувається активація eNOS, а утворений монооксид азоту дифундує до гладеньких м'язів та спричинює їхнє скорочення. У нейронах концентрація кальцію підвищується під час проходження нервового імпульсу, це призводить до активації nNOS. Утворений оксид азоту відповідає за незалежне від ендотелію розширення судин внаслідок нервової стимуляції гладеньких м'язів. Цей шлях необхідний для регулювання просвіту артерій мозку а також для ерекції пеніса[4].

Індуцибельна NO-синтаза[ред. | ред. код]

На відміну від інших ізоформ iNOS не відповідає на стимуляцію кальцієм, хоча і має дві приєднані кальмодулінові субодиниці[4]. Її експресія індукується у макрофагах та нейтрофілах, а також і в інших типах клітин (наприклад у гепатоцитах, хондроцитах, кератиноцитах, дихальному епітелії, клітинах аденокарциноми), у відповідь на стимуляцію цитокінами або/і ендотоксинами. Після цього активність може зберігатись навіть впродовж кількох днів[3]. Головна роль NO, що продукується за таких умов, це його токсична дія на бактерії та інші патогенні організми. Збільшенню згубного ефекту оксиду азоту сприяє супероксид аніон, що продукується разом із ним, сполучаючись вони утворюють навіть більш отруйну сполуку — пероксинітрит. Цитокіни та ендотоксини можуть викликати сильне і довготривале розширення судин і брак адекватної відповіді на вазоконстриктори, такі як епінефрин. Підвищене виділення NO робить внесок у патогенез септичного шоку, ушкодження тканин, пов'язаного із запаленням, зокрема під час автоімунних захворювань[4].

Примітки[ред. | ред. код]

  1. а б Voet et al, 2011, с. 686.
  2. Voet et al, 2011, с. 687.
  3. а б в Nathan C, Xie QW (1994). Nitric oxide synthases: roles, tolls, and controls. Cell. 78: 915—8. doi:10.1016/0092-8674(94)90266-6. PMID 7522969.
  4. а б в г Voet et al, 2011, с. 688.

Джерела[ред. | ред. код]

  • Voet D., Voet J.G. (2011). Biochemistry (вид. 4th). Wiley. с. 487—496. ISBN 978-0470-57095-1.

Література[ред. | ред. код]