Ядерний синтез

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Дейтерій-тритієва реакція синтезу вважається найперспективнішою як джерело термоядерної енергії

Я́дерний си́нтез — це процес, під час якого два атомних ядра об'єднуються, формуючи важче ядро.

Для зближення атомних ядер на відстань, достатню для того, щоб почала діяти сильна ядерна взаємодія і відбулася ядерна реакція, потрібна деяка кількість енергії.

Якщо ядро елемента, утвореного внаслідок об'єднання ядер, буде легшим ядра заліза, то зазвичай виділяється значно більше енергії, ніж витрачається на подолання електростатичного відштовхування. Завдяки цьому ядерний синтез — перспективне джерело енергії і є важливим напрямком досліджень сучасної науки і техніки.

Ядерний синтез є джерелом енергії в зорях та застосовується у водневих бомбах.

Процес реакції ядерного синтезу[ред.ред. код]

В атомному ядрі діють два типи взаємодії: сильна взаємодія, що утримує протони та нейтрони разом та значно слабше електростатичне відштовхування між однаково зарядженими протонами ядра, що намагається розірвати ядро. Сильна взаємодія проявляється лише на дуже коротких відстанях між протонами та нейтронами, що безпосередньо межують один з одним. Це також означає, що протони та нейтрони на поверхні ядра утримуються слабше, ніж протони та нейтрони всередині ядра. Сила електростатичного відштовхування натомість діє на будь-яких відстанях та є обернено пропорційною квадрату відстані між зарядами, тобто кожен протон в ядрі взаємодіє з кожним іншим протоном в ядрі. Це призводить до того, що зі збільшенням розміру ядра сили, які утримують ядро, зростають до певного атомного номера (заліза), а потім починають слабшати. Починаючи з бісмуту усі ядра важких елементів нестабільні.

Кулонівський бар'єр[ред.ред. код]

Для здійснення реакції ядерного синтезу слід витратити певну енергію на подолання сили електростатичного відштовхування між двома атомними ядрами та звести їх на відстань, де починає діяти сильна взаємодія. Енергія, яка потрібна для подолання сили електростатичного відштовхування, називається кулонівським бар'єром.

Кулонівський бар'єр найнижчий для ізотопів водню, оскільки вони мають у ядрі лише один протон. Для суміші дейтерію та тритію результуючий енергетичний бар'єр становить 0,1 МеВ. Для порівняння, щоб позбавити атом водню його електрона потрібно лише 13 еВ, тобто в 7500 разів менше. Коли реакція синтезу завершується, нове ядро перебуває у збудженому стані та переходить на нижчий енергетичний рівень із виділенням енергії. Наприклад, у реакції між дейтерієм та тритієм утворюється ядро гелію та випромінюється нейтрон із енергією 17,59 МеВ, що набагато більше, ніж потрібно для початку реакції. Тобто, реакція дейтерію та тритію відбувається з вивільненням значної кількості енергії.

Термоядерна реакція[ред.ред. код]

Якщо ядра є частиною плазми поблизу стану теплової рівноваги, а реакція синтезу відбувається за рахунок кінетичної енергії термічного руху іонів плазми, то така реакція синтезу називається термоядерним синтезом. Оскільки температура згідно з кінетичною теорією є мірою середньої кінетичної енергії частинок, нагріваючи плазму можна надати ядрам енергію, достатню для подолання кулонівського бар'єру.

Переклавши 0,1 MеВ (енергетичне значення кулонівського бар'єру для D-Т реакції синтезу) у Кельвіни отримаємо температуру понад 1 ГК, це надзвичайно висока температура.

Є однак два явища, внаслідок яких ядерні реакції відбуваються за значно нижчих температур. По-перше, температура відображає середню кінетичну енергію, тобто навіть за температур, нижчих ніж еквівалент 0,1 МеВ, частина ядер матиме енергію значно більшу за 0,1 МеВ, у той час як решта матиме меншу енергію. По-друге, внаслідок квантового тунелювання ядра можуть долати бар'єр Кулона і за меншої енергії. Імовірність такої події невелика, однак це дозволяє отримати (повільніші) реакції синтезу за нижчих температур.

Ядерний синтез у зорях[ред.ред. код]

Докладніше: Нуклеосинтез
Протон-протонний ланцюжок є основиним джерелом енергії для Сонця та менших зір.

Умови для ядерного синтезу повною мірою виникають у надрах зір, зокрема Сонця. Саме реакції ядерного синтезу виробляють енергію, що випромінюється зорями. Першою ланкою зоряного нуклеосинтезу є реакція утворення α-частинки з чотирьох протонів. Ця реакція забезпечує енергією усі зорі протягом близько 90% часу їх існування. Наступною ланкою є потрійна α-реакція (утворення ядра вуглецю з трьох ядер гелію). Вона може відбуватися лише в зорях, маса яких перевищує 0,5 M☉.

Ядро вуглецю може реагувати з протонами та α-частинками, завдяки чому утворюються різноманітні легкі ядра аж до заліза. Утворення ще важчих ядер відбувається у ядрах та оболонках масивних червоних гігантів завдяки s-процесу.

Штучний ядерний синтез[ред.ред. код]

Процес ядерного синтезу штучно відтворюють на різноманітному устаткуванні за для наукових та технологічних цілей.

Найперший пристрій, у якому було отримано ядерний синтез - вакуумна камера з природним джерелом α-часток, яку застосував Ернест Резерфорд.

Пізніше було створено різноманітні прискорювачі заряджених часток, в яких також відбувалися ядерні реакції синтезу. На такому устаткуванні було отримано штучно синтезовані хімічні елементи з атомними номерами більше 100[1]. У прискорювачах ядерний синтез відбувається за рахунок енергії електричного поля, що прискорює протони, α-частинки або важчі іони.

Найперше практичне застосування реакції ядерного синтезу - воднева бомба, де термоядерна реакція ініціюється вибухом ядерного запалу.

Також використовуються так звані нейтронні фабрики - джерела нейтронів[2], що отримуються від реакцій синтезу завдяки енергії електричного поля. Зокрема, мініатюрні джерела нейтронів використовують як ініціатори для ядерних бомб[3]. Подібним чином функціонують також фузори - мініатюрні реактори синтезу з інерційним утриманням плазми та споріднені з ними реактори типу "Полівелл". Фузори не вважають перспективними, як джерело енергії, і вони є предметом інтересу аматорів ядерної фізики, тоді як реактори системи "Полівелл" досліджуються як перспективне джерело енергії.

Здійснюються активні дослідження для створення пристроїв, що допомогли б здобувати термоядерну енергію. Проте небагато сучасних термоядерних реакторів застосовують безпосередньо для отримання термоядерної реакції. Більшість з таких пристроїв - моделі, що використовують водневу плазму, яка за своїми властивостями подібна до дейтерій-трітієвої. Найбільшим проектом термоядерної енергетики є міжнародний проект ITER.

Ядерний синтез у енергетиці[ред.ред. код]

Щоб бути придатною для використання як джерело енергії, реакція синтезу має задовільняти наступним критеріям:

  • … бути екзотермічною.
  • … задіяти легкі елементи. Ця вимога дозволяє використовувати реактанти з найнижчим кулонівським бар'єром, реакції між якими починаються за нижчої температури.
  • … тільки два реактанти. Реакції з більшою кількістю компонент можливі лише за значної густини плазми, що існує тільки в надрах зір.
  • … мати два продукти реакції. Це дозволяє одночасно задовільнити закони збереження енергії та імпульсу[Джерело?].
  • … зберігати протони та нейтрони[Джерело?].

Кількість реакцій, які задовільняють зазначеним вимогам, невелика, нижче наведено найцікавіші з них.

(1) D + T   4He (3.5 MeV) +   n (14.1 MeV)  
(2) D + D   T (1.01 MeV) +   p (3.02 MeV)         (50 %)
(3)         3He (0.82 MeV) +   n (2.45 MeV)         (50 %)
(4) D + 3He   4He (3.6 MeV) +   p (14.7 MeV)
(5) T + T   4He   + n + 11.3 MeV
(6) 3He + 3He   4He   + p  
(7) 3He + T   4He   +   p &nbsp + n + 12.1 MeV   (51 %)
(8)         4He (4.8 MeV) +   D (9.5 MeV)         (43 %)
(9)         4He (0.5 MeV) +   n (1.9 MeV) + p (11.9 MeV)   (6 %)
(10) D + 6Li 4He + 22.4 MeV
(11) p + 6Li   4He (1.7 MeV) +   3He (2.3 MeV)
(12) 3He + 6Li 4He   +   p + 16.9 MeV
(13) p + 11B 4He + 8.7 MeV

p (протон), D (дейтерій) та T (тритій) - усталені позначення для трьох ізотопів водню.

Щоб оцінити придатність цих реакцій, окрім компонентів реакції та енергії, що вивільняється, слід знати поперечний перетин реакції. Кожен реактор синтезу здатен витримати певне максимальне значення тиску плазми, та щоб бути економічно вигідним він працюватиме із густиною плазми, що близька до максимальної. За такого тиску максимальний вихід реакції буде отримано за температури, коли значення <σv>/T² є максимальним. За такої температури значення nTτ, потрібне для запалення (англ. ignition), є мінімальним. Нижче наводяться значення оптимальної температури та <σv>/T² деяких із наведених вище реакцій.

пальне T [keV] <σv>/T² [m³/sec/keV²]
D-T 13,6 1,24×10-24
D-D 15 1,28×10-26
D-3He 58 2,24×10-26
p-6Li 66 1,46×10-27
p-11B 123 3,01×10-27

Будь-яка із наведених вище реакцій могла б бути джерелом енергії синтезу. Однак окрім температури та поперечного перетину розглянемо також загальну енергію синтезу Efus, енергію заряджених часток Ech, та атомний номер Z неводневих реактантів.

пальне Z Efus [MeV] Ech [MeV] нейтронність
D-T 1 17,6 3,5 0,80
D-D 1 12,5 4,2 0,66
D-3He 2 18,3 18,3 ~0,05
p-11B 5 8,7 8,7 ~0,001

Останній стовпчик — це нейтронність реакції, тобто та частина енергії, яка вивільняється у вигляді нейтронів. Це значення є важливим індикатором, оскільки серйозними є проблеми, пов'язані із нейтронним опроміненням (такі як радіаціне пошкодження матеріалів, біологічний захист реактора, дистанційне обслуговування та безпека). Для перших двох реакцій вона обрахована за формулою (Efus-Ech)/Efus. Для двох останніх наведено приблизні значення випромінювання для побічних реакцій, що утворюють нейтрони, оскільки власне реакція їх не виробляє.

Критерій Лоусона[ред.ред. код]

Докладніше: Критерій Лоусона

Важливим для розуміння реакції синтезу є поняття поперечного перетину реакції σ: міри ймовірності реакції синтезу як функції відносної швидкості двох взаємодіючих ядер. Для термоядерної реакції синтезу зручніше розглядати середнє значення розподілу добутку поперечного перетину на швидкість ядра \langle \sigma v \rangle. Використовуючи його, можна записати швидкість реакції (злиття ядер на об'єм на час) як

f = n_1 n_2 \langle \sigma v \rangle

Де n_1 і n_2 це густина реактантів. \langle \sigma v \rangle зростає від нуля за кімнатної температури до значної величини вже за енергій 10 — 100 кеВ (такій енергії відповідають температури речовини порядку мільйонів градусів Кельвіна при котрих компоненти реакційної суміші переходять в стан плазми).

Порівняння параметрів реакцій[ред.ред. код]

пальне <σv>/T² штраф/винагорода реактивність критерій Лоусона густина енергії
D-T 1,24×10-24 1 1 1 1
D-D 1,28×10-26 2 48 30 68
D-3He 2,24×10-26 2/3 83 16 80
p-11B 3,01×10-27 1/3 1240 500 2500

«Штраф/винагорода» стосуються неводневого та однокомпонентного пального. «Штраф» у розмірі (2/(Z+1)) для неводневих компонентів пального випливає з того факту, що з таких компонент утворюється більше електронів, котрі створюють тиск, але не беруть участі в реакції синтезу. Також є «винагорода» для D-D реакції, оскільки кожен іон у плазмі може взаємодіяти з будь-яким іншим іоном (однокомпонентне пальне).

Величину в колонці «реактивність» отримано діленням максимального перетину <σv>/T² (1,24×10-24, з попередньої таблиці) на добуток другої та третьої колонок. Вона означає наскільки інші реакції відбуваються повільніше, ніж D-T реакція, за тих же умов. Колонка «Критерій Лоусона» зважує ці результати із Ech та слугує індикатором того, наскільки важче досягнути запалення цих реакцій (порівняно із D-T реакцією). Остання колонка, «густина енергії», зважує реактивність із Efus. Вона слугує вказівником того, наскільки нижча густина енергії синтезу (порівняно із D-T реакцією) та може слугувати мірою економічного потенціалу[Джерело?].

Мюонний каталіз[ред.ред. код]

Докладніше: Мюонний каталіз

Термоядерна реакція може бути істотно полегшена за рахунок введення в реакційну суміш мюонів.

Мюони μ- вступають у взаємодію з компонентами реакційної суміші та утворюють мезомолекули, в яких відстань між ядрами атомів речовини дещо менше, що полегшує їх зближення та підвищує ймовірність тунелювання ядер через кулонівський бар'єр.

Кількість реакцій синтезу, що ініціюється одним мюоном, обмежено величиною коефіцієнта прилипання мюона. Експериментально вдалося отримати близько 100 реакцій на один мюон, тобто один мюон здатний вивільнити енергію ~ 100 × Х МеВ, де Х - енергетичний вихід реакції, що каталізується.

Кількість енергії, що таким чином звільняється, поки що менша, ніж енергетичні витрати на отримання самого мюона (5-10 ГеВ). Таким чином, мюонний каталіз поки енергетично невигідний процес. Синтез із використанням мюонного каталізу можливо стане ефективним, коли кількість реакцій, що каталізуються одним мюоном, становитиме близько ~ 104[Джерело?].

Див. також[ред.ред. код]

Примітки[ред.ред. код]