Губка Менгера

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку
5 ітерацій
На 6-й ітерації
Губка Менгера після 4-х ітерацій

Губка Менгерагеометричний фрактал, один з тривимірних аналогів килима Серпінського.

Побудова[ред. | ред. код]

Ітеративний метод[ред. | ред. код]

Куб з ребром 1 ділять площинами, паралельними його граням, на 27 рівних кубів. З куба видаляють центральний куб і всі прилеглі до нього по двовимірних гранях куби такого ж розміру. Лишається множина , що складається з решти 20 замкнутих кубів «першого рангу». Вчинивши так само з кожним з кубів першого рангу, отримаємо множину , що містить 400 кубів другого рангу. Продовжуючи цей процес нескінченно, одержимо нескінченну послідовність: , перерізом членів якої є губка Менгера.

Метод хаосу[ред. | ред. код]

  1. Задаються координати 20 точок-атракторів. Ними є 8 вершин і 12 середин ребер вихідного куба .
  2. Ймовірнісний простір розбивається на 20 рівних частин, кожна з яких відповідає одному атрактору.
  3. Задається деяка початкова точка , що лежить всередині куба .
  4. Початок циклу побудови точок, що належать множині губки Менгера.
    1. Генерується випадкове число .
    2. Активним атрактором стає той, на ймовірнісний підпростір якого випало згенероване число.
    3. Будується точка з новими координатами: , де: – координати попередньої точки ; – координати активної точки-атрактора.
  5. Повернення до початку циклу.

Губка Менгера складається з 20 однакових частин, коефіцієнт подібності 1/3.

Властивості[ред. | ред. код]

  • Кожна грань вихідного куба виглядає як килим Серпінського.
  • Губка Менгера має проміжну (тобто не цілу) хаусдорфову розмірність, яка дорівнює оскільки вона складається з 20 рівних частин, кожна з яких подібна всій губці з коефіцієнтом подібності 1/3.
  • Губка Менгера має топологічну розмірність 1, більше того
    • Губка Менгера топологічно характеризується як одновимірний зв'язний локально зв'язний метризований компакт, що не має точок локального розбиття (тобто для будь-якого зв'язного околу будь-якої точки множина зв'язна) і не має непорожніх відкритих і вкладених у площину підмножин.
  • Губка Менгера є універсальною кривою Урисона, тобто вона має таку властивість, що яка б не була крива Урисона , в губці Менгера знайдеться підмножина , гомеоморфна .
  • Губка Менгера має нульовий об'єм, але нескінченну площу граней. Об'єм визначається формулою 20/27 на кожну ітерацію.

Див. також[ред. | ред. код]

Фільм[ред. | ред. код]

скринька з фільму "Повсталий з пекла"

На основі губки Менгера французьким інженером ЛеМаршаном з серії фільмів Повсталий з пекла була побудована скринька.