Фільтр (порядок)

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Два фільтри, позначені синім та зеленим кольором,
та ультрафільтр в який вони входять, позначено голубим.

Фільтр — в теорії порядку, це підмножина частково впорядкованої множини яка задовольняє певним умовам. Також фільтри можна знайти в топології, де вони власне, і виникли.

Фільтр — поняття двоїсте до ідеалу.

Формальне визначення[ред.ред. код]

Підмножина F частково впорядкованої множини (P,≤) є фільтром, якщо виконуються такі умови:

  1. . (F є базою фільтру)
  2. (F є верхньою множиною)
  3. Фільтр є правильним, якщо він не дорівнює всій множині P. Часто це вважають частиною поняття фільтру.

Спочатку поняття фільтру виникло для решіток. У випадку решіток, вищенаведене означення еквівалентне наступному твердженню:

Підмножина F решітки (P,≤) є фільтром, тоді і тільки тоді, коли це верхня множина, замкнена щодо застосування операції інфімуму скінченну кількість разів.
Тобто, для будь-яких x, y з F, xy також належить F.

Поняття двоїсте до фільтру, тобто, те що ми отримаємо, замінивши для фільтру всі ≤ на обернені і ∧ на ∨, це — ідеал.

Найменьший фільтр, що містить елемент p називається головним фільтром породженим цим елементом. Формально позначається

Простий фільтр — фільтр, доповненням якого є ідеал.

Максимальний фільтр чи ультрафільтр — фільтр, для якого не існує більшого фільтра.

Фільтри на множині[ред.ред. код]

Для довільної множини, її булеан є частково-впорядкованою множиною за включенням, таким чином можна вводити поняття фільтра та ідеала для множини.

База фільтра[ред.ред. код]

Нехай - фільтр на множині . Сімейство підмножин называється базою (базисом) фільтра , якщокожний елемент фільтра містить деякий елемент бази , тобто для кожного існує таке, що . При цьому фільтр збігається з сімейством усіх можливих надмножин множин з . Зокрема, фільтри, які мають спільну базу, збігаються. Кажуть також, що база породжує фільтр

Дві бази та називаються еквівалентними, якщо будь-який елемент містить у собі деякий елемент , і навпаки, будь-який елемент містить у собі деякий елемент

Еквівалентні бази породжують один і той самий фільтр. Серед усіх баз, еквівалентних даній базі існує максимальна за включенням база, а саме, породжений цією базою фільтр . Таким чином, між класами еквівалентних баз і фільтрами існує природня бієкція.

Порівняння фільтрів[ред.ред. код]

Нехай на множині задані два фільтра і . Кажуть, що фільтр мажорує фільтр ( сильніший , тонший ), якщо . У цьому випадку також говорять, що фільтр мажорується фільтром ( слабший , грубіший ).

Говорять, що база сильніше бази , і записують , якщо кожний елемент містить у собі деякий елемент . База сильніша бази тоді і тільки тоді, коли фільтр , породжений базою , сильніший фільтра , породженого базою .

Бази та еквівалентні тоіді і тільки тоді, коли одночасно та .

Фільтри у топологічних просторах[ред.ред. код]

Нехай -- топологічний простір і --- фільтр на множині . Точка називається границею фільтра , якщо кожний окіл точки надежить фільтру . Позначення: . Для фільтра , породженого базою , рівність виконується тоді і тільки тоді, коли для кожного околу повністю вміщає деяку множину з .

У гаусдорфовому топологічному просторі фільтр може мати не більше однії границі.

Точка називається граничною точкою (точкою дотику, частковою границею) фільтра , якщо належить замиканню кожної множини з , тобто для всіх . Рівносильно, для кожного околу точки і для кожної виконується . Кожна гранична точка ультрафільтра є його границею.

В компактному топологічному просторі кожен фільтр має граничну точку, а кожен ультрафільтр має границю.

Дивись також[ред.ред. код]

Джерела[ред.ред. код]

  • Биркгоф Г. Теория решёток / пер. с англ. В. Н. Салий; под ред. Л. А. Скорнякова. — 3-е изд. — Москва : Наука, 1984. — 568 с.(рос.)