Граф Хівуда

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку
Граф Хівуда
Названо на честьПерсі Джон Хівуд
Вершин14
Ребер21
Радіус3
Діаметр3
Обхват6
Автоморфізм336 (PGL2(7))
Хроматичне число2
Хроматичний індекс3
Спектр
Число черг2
ВластивостіДвочастковий
Кубічний
дистанційно-транзитивний
дистанційно-регулярний
тороїдальний
гамільтонів
Симетричний

Граф Хівуданенаправлений граф з 14 вершинами і 21 ребром, названий на честь Персі Джона Хівуда.[en][1]

Комбінаторні властивості

[ред. | ред. код]

Граф є кубічним і всі цикли в графі містять шість і більше ребер. Менший кубічний граф містить менші цикли, так що цей граф є (3,6)-кліткою, найменшим кубічним графом з обхватом 6. Він є також дистанційно-транзитивним (дивіться список Фостера), а тому дистанційно-регулярним.[2] У графі Хівуда мається 24 паросполучення, і у всіх паросполучень ребра, що не входять у паросполучення, утворюють гамільтонів цикл. Наприклад, малюнок показує вершини графу, поміщені на окружність і що утворюють цикл, а діагоналі всередині кола утворюють паросполучення. Якщо розділити ребра циклу на два паросполучення, ми отримаємо три абсолютні паросполучення (тобто, 3-кольорову розмальовку ребер) вісьмома різними способами.[2] Зважаючи симетрії графу будь-які два досконалих парування і будь-які два гамільтонових цикли можна перетворити з одного в інше.[3]

У графі Хівуда 28 циклів, що містять по шість вершин. Кожен такий цикл не пов'язаний в точності з трьома іншими 6-вершинними циклами. Серед цих трьох циклів кожен є симетричною різницею двох інших. Граф в якому кожна вершина відповідає циклу з 6 вершин графу Хівуда, а дуги відповідають незв'язним парам — це граф Коксетера.[4]

Геометричні та топологічні властивості

[ред. | ред. код]

Граф Хівуда є тороїдальним графом, тобто його можна відобразити без перетинів на поверхні тора. Як результат утворюється регулярна карта {6,3}2,1 з 7 гексагональними поверхнями. Кожна поверхня мапи суміжна до кожної іншої, а отже карта потребує 7 кольорів. Граф названий на честь Персі Джона Хівуда, який довів у 1890 році, що не існує карти для тора яка потребує більше 7, а отже карта є максимальною.[5][6]

Ця карта також може бути вірно реалізована як многогранник Сілашші, єдиний відомий полігон, окрім тетраедра, в якому кожна пара граней сусідні.

Граф Хівуда є також графом Леві поверхні Фано, тобто графом, що представляє інцидентність точок і прямих в цій геометрії. У цій інтерпретації цикли довжини 6 в графі Хівуда відповідають трикутникам поверхні Фано, тобто графом, представленим інцидентність точок і прямих в цій геометрії. У цій інтерпретації цикли довжини 6 в графі Хівуда відповідають трикутникам поверхні Фано. Граф Хівуда має число схрещень рівне 3 і є найменшим кубічним графом з таким числом схрещень[7]. Разом з графом Хівуда існує 8 різних графів порядку 14 з числом схрещень 3. Граф Хівуда є графом одиничних відстаней — його можна вкласти в площину так, що суміжні вершини опиняться в точності на відстані одиниця, при цьому ніякі дві вершини не потраплять на одне і те ж місце площині і ніяка крапка не виявиться всередині ребра. Однак у відомих вкладень цього типу відсутня симетрія, притаманна графу.[8]

Алгебраїчні властивості

[ред. | ред. код]

Група автоморфізмів графу Хівуда ізоморфна проективної лінійної групою PGL22(7), групі порядку 336.[9] Він діє транзитивно на вершини, на ребра і на дуги графу, тому граф Хівуда є симетричним. Є автоморфізм, що переводять будь-яку вершину в будь-яку іншу вершину і будь ребро в будь-яке інше ребро. Згідно зі списком Фостера граф Хівуда, позначений як F014A, є єдиним кубічним графом з 14 вершинами.[10][11] Характеристичний многочлен матриці графу Хівуда — . Спектр графу дорівнює . Це єдиний граф з таким многочленом, який визначається спектром.

Хроматичний многочлен графу дорівнює:

.

Галерея

[ред. | ред. код]

Примітки

  1. Weisstein, Eric W. Heawood Graph(англ.) на сайті Wolfram MathWorld.
  2. а б . Brouwer, Andries E. Heawood graph. Additions and Corrections to the book “Distance-Regular Graphs” (Brouwer, Cohen, Neumaier; Springer; 1989). Архів оригіналу за 1 серпня 2012. Процитовано 26 січня 2016.
  3. M. Abreu, R. E. L. Aldred, M. Funk, Bill Jackson, D. Labbate, J. Sheehan. Graphs and digraphs with all 2-factors isomorphic // Journal of Combinatorial Theory[en]. — 2004. — Т. 92, вип. 2. — С. 395—404. — DOI:10.1016/j.jctb.2004.09.004..
  4. Italo J. Dejter. From the Coxeter graph to the Klein graph // Journal of Graph Theory. — 2011. — arXiv:1002.1960. — DOI:10.1002/jgt.20597..
  5. Ezra Brown. The many names of (7,3,1) // Mathematics Magazine. — 2002. — Т. 75, вип. 2. — С. 83—94. — DOI:10.2307/3219140. — JSTOR 3219140.
  6. P. J. Heawood. Map colouring theorems // Quarterly J. Math. Oxford Ser. — 1890. — Т. 24. — С. 322—339.
  7. послідовність A110507 з Онлайн енциклопедії послідовностей цілих чисел, OEIS
  8. Eberhard H., A. Gerbracht. Eleven unit distance embeddings of the Heawood graph. — 2009. — arXiv:0912.5395..
  9. J. A. Bondy, U. S. R. Murty. Graph Theory with Applications. — New York : North Holland, 1976. — С. 237. — ISBN 0-444-19451-7.
  10. Royle, G. «Кубические симметричные графы (список Фостера).» [Архівовано 20 липня 2008 у Wayback Machine.]
  11. Марстон Кондер[en] и Dobcsányi, P. «Trivalent Symmetric Graphs Up to 768 Vertices.» J. Combin. Math. Combin. Comput. 40, 41—63, 2002.