Теорема Скорохода про вкладення
У математиці, зокрема в теорії ймовірностей, під Теоремою Скорохода про вкладення розуміють одну з двох або обидві теореми, які дають можливість подати сукупність випадкових величин у формі Вінерівського процесу визначеного на сукупності марківських моментів часу. Обидві теореми названі на честь українського математика Анатолія Володимировича Скорохода.
Нехай — дійсно-значна випадкова величина з математичним сподіванням рівним 0 і скінченною дисперсією; позначимо — стандартний дійснозначний Вінерівський процес (броунівський рух). Тоді існує марківський момент часу (відносно природної фільтрації породженої вінерівським процесом ), такий що має закон розподілу той самий, що і в.в. ,
- ,
а також
Нехай — послідовність незалежних однаково-розподілених випадкових величин, з нульовим математичним сподіванням і скінченною дисперсією, і нехай
Тоді існує неспадна послідовність марківських моментів часу така що має той самий сукупний розподіл що й частинні суми і є незалежними однаково розподіленими випадковими величинами з наступною властивістю
і
Теореми Скорохода мають попереджувальний характер для моделювання фінансових даних. Конкретніше, якщо маємо деяку модель фінансових даних, що змодельована деяким процесом і далі для практичного застосування ми збираємо дані для цього процесу за деяким стохастичним принципом (наприклад трансакція за трансакцією), то як не дивно розподіл зібраних даних суттєво відрізняється від розподілу закладеного в моделі.
- Карташов М. В. Імовірність, процеси, статистика. — Київ : ВПЦ Київський університет, 2007. — 504 с.
- Гихман И. И., Скороход А. В., Ядренко М. В. Теория вероятностей и математическая статистика. — Київ : Вища школа, 1988. — 436 с.(рос.)
- Гихман И. И., Скороход А. В. Введение в теорию случайных процессов. — 2-е. — Москва : Наука, 1977. — 567 с.(рос.)
- Billingsley, Patrick (1995). Probability and Measure. New York: John Wiley & Sons, Inc. ISBN 0-471-00710-2. (Theorems 37.6, 37.7)