Термоядерна енергія

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Сонце є природнім термоядерним реактором

Термоя́дерна ене́ргія — енергія у деякій придатній до використання формі, як правило це електрика, джерелом якої є реакція термоядерного синтезу. З технічної точки зору більшість генерованої електроенергії є неявною формою термоядерної енергії, оскільки Сонце є величезним природнім термоядерним реактором, та практично всі горючі копалини на Землі є акумульованою сонячною енергією. Однак у вузькоспеціальному значенні термін використовується стосовно енергії що продукується під час штучно підтримуваної реакції термоядерного синтезу. На сьогодні жодного термоядерного електрогенератора не існує, хоча інтенсивні експерименти тривають.

Реакція синтезу як промислове джерело електроенергії[ред.ред. код]

Комбіноване зображення зсередини Joint European Torus, коли він вимкнутий, зліва, та працює, справа.

З ряду причин, енергія синтезу розглядається багатьма дослідниками в якості «природного» джерела енергії у довготривалій перспективі. Прихильники комерційного використання термоядерних реакторів для виробництва електроенергії на Практично невичерпні запаси пального (водень)

  • Пальне можна видобувати із морської води будь-де на узбережжі у світі, що робить неможливим монополізацію пального однією чи групою країн
  • Неможливість некерованої реакції синтезу
  • Відсутність продуктів згоряння
  • Немає необхідності використовувати матеріали що можуть бути використанні для виробництва ядерної зброї, таким чином виключається випадки саботажу та тероризму
  • В порівнянні з ядерними реакторами, незначна кількість радіоактивного сміття із коротшим періодом напіврозпаду.

Оцінюють, що наперсток наповнений дейтерієм продукує енергію еквівалентну 20 тонам вугілля. Озеро середнього розміру в змозі забезпечити країну енергією на сотні років. Однак слід зауважити, що існуючі дослідницькі реактори спроектовано для досягнення простішої дейтерій-тритієвої (D-T) реакції, цикл пального якої вимагає використання рідкоземельного металу літію для виробництва тритію, тоді як заяви про невичерпність енергії стосуються використання дейтерій-дейтерієвої (D-D) реакції у другому поколінні реакторів.

Так само як і реакція ділення, реакція синтезу не продукує атмосферного забруднення, що є головним внеском у глобальне потепління. Це є значною перевагою, оскільки використання горючих копалин для виробництва електроенергії має наслідком те, що, наприклад у США виробляється 29 кг CO2 (один із основних газів що сприяють глобальному потеплінню) на жителя США на день.

Радіоактивні відходи комерційної реакції синтезу[ред.ред. код]

Реакція синтезу також продукує суттєво меншу кількість радіоактивного сміття ніж реакція ядерного поділу що використовується у існуючих атомних електростанціях. Слід, однак, зауважити, що у незаперечній формі це стосується продуктів самої реакції: єдиний побічний продукт D-T реакції це нейтральний гелій, а D-D реакція продукує незначну кількість слабо-радіоактивного тритію, період напіврозпаду котрого становить всього 12 років. Стосовно загальної кількості радіоактивних відходів, багато залежить від типу використовуваного пального, використовуваних конструктивних матеріалів. Особливістю як D-T так і D-D реакцій є інтенсивне нейтронне випромінювання, котре має властивість активувати матеріали, роблячи радіоактивним сам реактор, що, можливо, означатиме десятки тисяч тон радіоактивних відходів. У дослідженні на замовлення Офісу в Справах Науки і Техніки Британського Парламенту, наводиться оцінка, що загальний обсяг радіоактивних відходів буде порівняльним із звичайними ядерними реакторами, та що частина цих відходів вимагатиме довготривалого зберігання. Перспективним є використання слабоактивовуваних матеріалів, основні кандидати, жоден із яких на сьогодні не є готовим для використання в реакторах, це ванадієві сплави, карбід кремнію (SiC) та деякі типи сталі. На сьогодні є пропозиція створення Міжнародного Центру Дослідження Опромінених Матеріалів (International Fusion Material Irradiation Facility), вартість якого оцінюється в 600 млн. Євро, але жодних практичних кроків в цьому напрямі поки що не зроблено.

Короткий підсумок характеристик перспективних матеріалів для будівництва реактору наводиться нижче в таблиці. Матеріали що досліджувались: сталь F-82H (Fe-0.1 %C-8 %Cr-2 %W-0.04 %Ta), сплав ванадію (V-4 %Ti-3.3 %Cr) та карбід кремнію (SiC). Радіоактивні відходи класифікуються в залежності від того чи потрібне активне охолодження та які саме компоненти є основним джерелом радіації. В таблиці наведеній нижче відходи є високорадіоактивними (High Level Radioactive Waste, HLW) якщо вони генерують тепло понад 50 Вт/м3. Межа в 12МБк/кг (для \beta і \gamma випромінюючих нуклідів) слугує межею між середньоактивними (Intermediate Level Waste, ILW) та слабоактивними (Low Level Waste, LLW) відходами. На практиці різниця означає, що високо- та середньоактивне сміття вимагає біологічного захисту та тривалого зберігання. Високоактивні відходи вимагають активного охолодження та постійного моніторингу. середньоактивні відходи як правило поміщають в стале-бетонні контейнери та захоронюють в спеціально обладнаних сховищах. Низькоактивні відходи можуть обслуговуватись людьми в захисному одязі та за умови дотримання правил радіаційної безпеки.

Тип матеріалу Час (років) активного охолодження (HLW) Час (років) переходу ILW в LLW
V-alloy 0.7 2000
SiC 1.3 13000
F-82H 8 600

Вартість електроенергії в порівнянні з традиційними джерелами[ред.ред. код]

Критики вказують, що питання економічної доцільності використання ядерного синтезу для виробництва електроенергії залишається відкритим. В тому ж дослідженні на замовлення Офісу в Справах Науки і Техніки Британського Парламенту вказується, що собівартість виробництва електроенергії із використанням термоядерного реактору буде, імовірно, у верхній частині спектру вартості традиційних джерел енергії. Багато залежатиме від майбутньої технології, структури та регулювання ринку. Пряма вартість електроенергії дуже залежатиме від ефективності використання, часу на обслуговування та вартості декомісування реактору. Пропоненти комерційного використання енергії ядерного синтезу заперечують, що викопне пальне значною мірою субсидується урядом, як прямо так і непрямо, наприклад використанням збройних сил для забезпечення їх безперебійного постачання, війна в Іраку часто наводиться як контроверсійний приклад такого субсидування. Врахування таких непрямих субсидій є дуже складним, та робить точне порівняння собівартості практично неможливим.

Окремо стоїть питання вартості досліджень. Країни Європейської Спільноти витрачають близько 200 млн.€ щороку на дослідження, та прогнозується, що потрібно ще кілька десятиріч поки промислове використання ядерного синтезу стане можливим. Прихильники альтернативних джерел електроенергії вважають, що було б доцільніше спрямувати ці кошти на впровадження відновлювальних джерел електроенергії.

Доступність комерційної енергії ядерного синтезу[ред.ред. код]

На жаль, незважаючи на поширений оптимізм (поширений починаючи з 1950-х років, коли перші дослідження розпочались), суттєві перешкоди між сьогоднішнім розумінням процесів ядерного синтезу, технологічними можливостями та практичним використанням ядерного синтезу досі не подолані, неясним є навіть чи економічно вигідне виробництво електроенергії із використанням ядерного синтезу є можливим в принципі. Хоча прогрес в дослідженнях є постійним, дослідники постійно стикаються із новими проблемами. Наприклад, проблемою є розробка матеріалу що здатен витримати нейтронне бомбардування, що, як оцінюється, повинно бути в 100 разів інтенсивніше ніж у традиційних ядерних реакторах.

Розрізняють такі етапи в дослідженнях:

  • Рівновага (Break-even): коли загальна енергія що виділяється в процесі синтезу дорівнює загальній енергії затраченій на запуск та підтримку реакції. Це співвідношення позначають символом Q. Рівновага реакції було продемонстровано на JET (Joint European Torus) в Великобританії в 1997 році.
  • Палаюча плазма (Burning Plasma): проміжний етап, на котрому реакція підтримуватиметься головним чином альфа-частинками що продукуються в процесі реакції, а не зовнішнім підігрівом. Q ≈ 5. Досі не досягнутий.
  • Запалення (Ignition): стабільна реакція що підтримує саму себе. Повинна досягатись при великих значеннях Q. Досі не досягнуто.

Наступним кроком в дослідженнях повинен стати ITER (International Thermonuclear Experimental Reactor), Міжнародний Термоядерний Експериментальний Реактор. На цьому реакторі планується провести дослідження поведінки високотемпературної плазми (палаюча плазма із Q ~ 10) та конструктивних матеріалів для промислового реактору. Остаточною фазою досліджень стане DEMO: прототип промислового реактору, на котрому буде досягнуто запалення, та продемонстровано практичну придатність нових матеріалів. Найоптимістичніші прогнози завершення фази DEMO: 30 років. Враховуючи орієнтовний час на побудову та введення в експлуатацію промислового реактору, нас відділяє ~40 років від промислового використання термоядерної енергії.

Конструкція електростанції[ред.ред. код]

Термоядерні реактори переважно класифікуються відповідно до типу «утримування» (confinement) гарячої плазми. Більшість досліджень стосуються магнітного утримування плазми, в такій конструкції потужні магніти утримують гарячу плазму в центрі камери, не даючи їй руйнувати камеру (температура плазми ~ 100'000'000 K). Серед різноманітних типів реакторів із магнітним утриманням, Токамак продемонстрував найкращі результати із часу своєї появи. Інший популярний тип утримання - інерційний реактор, найінтенсивніші дослідження якого ведуть американські науковці. В ньому крихітні кульки пального («пелети») вистрілюються в центр камери, та «обстрілюються» потужним лазером. Оскільки камера є порівняно великою, густина енергії, що нагріває стінки камери є недостатньою для їх руйнування. Існує також ряд менш поширених методів утримання плазми, наприклад з використанням самостягування розряду, в яких струм, що проходить через плазму генерує власне магнітне поле, або електростатичне утримання, де іонізована плазма утримується силою електростатичного відштовхування, як у реакторі Фарнсворта-Хірша.

Різні типи реакторів мають свої переваги та недоліки. Токамаки є імовірно найкраще дослідженим типом, що є найближчим до практичного використання. Реактор із інерційним утриманням продукує плазму із найкращими характеристиками, та є найкращим типом реактору для збройових досліджень, генерування рентгенівських променів, надмалих реакторів та, імовірно, в майбутньому для космічних польотів. Реактори цього типу залежать на паливі у формі «пелет» ідеальної форми, внаслідок обстрілу потужним лазером ця форма дозволяє генерувати симетричну ударну хвилю що розігріває пальне до стану дуже щільної плазми. На практиці це виявилось надзвичайно складним завданням.

Існує жорстка конкуренція між програмами дослідженнями різних типів утримування за фінансування, що призвело до того, що практичні дослідження на сьогодні сконцентровані на Токамак та інерційному утриманні.

У 2006 р. країни Євросоюзу, Росії, США, Японії, Південної Кореї узгодили будівництво експериментального міжнародного термоядерного реактора (ITER) на півдні Франції із повним закінченням робіт до 2037-2040 років.

Існують також «неортодоксальні» теорії та реакції синтезу, див. холодний синтез.

Цикл пального[ред.ред. код]

Реактори першого покоління працюватимуть на суміші дейтерію та тритію. Це пальне має ряд недоліків:

  1. Реакція продукує значну кількість нейтронів, що активують (радіоактивно заражають) реактор та теплообмінник. Насправді, нейтрони що з'являються в процесі реакції поглинаються захистом реактору, та тепло що виділяється використовується для нагрівання теплообмінника, що, своєю чергою, використовуватиметься для обертання генератора. Також потрібні заходи для захисту від можливого витоку радіоактивного тритію.
  2. Тільки близько 20 % енергії синтезу є у формі заряджених часток (решта нейтрони), що обмежує можливість прямого перетворення енергії синтезу в електроенергію.
  3. Використання D-T реакції залежить від наявних запасів літію значно обмеженіших, ніж запаси дейтерію.

Нейтронне опромінення під час D-T реакції настільки значне, що після першої серії тестів на JET, найбільшому реакторі на сьогодні, що використовує це паливо, реактор став настільки радіоактивним, що для завершення річного циклу тестів довелось додати роботизовану систему дистанційного обслуговування.

Існують, в теорії, альтернативні види пального, позбавлені вказаних недоліків. Але їхньому використанню перешкоджає фундаментальне фізичне обмеження. Щоб отримати достатню кількість енергії із реакції синтезу, необхідно утримувати плазму із високою густиною при температурі синтезу (108 K) протягом певного часу. Цей фундаментальний аспект синтезу описується добутком густини плазми, n, на час утримання нагрітої плазми, τ, що потрібен для досягнення рівноваги. Добуток, nτ, залежить від типу пального і є функцією температури плазми. Із усіх видів пального дейтерій-тритієва суміш вимагає найнижчого значення nτ щонайменше на порядок, і найнижчу температуру реакції, щонайменше в 5 разів. Таким чином, D-T реакція є необхідним першим кроком, однак використання інших видів пального залишається важливою метою досліджень.

Посилання[ред.ред. код]

Див. також[ред.ред. код]