Простір елементарних подій

Матеріал з Вікіпедії — вільної енциклопедії.
Версія від 15:28, 22 січня 2022, створена 188.163.108.209 (обговорення) ("грань" замінити на "ребро")
Перейти до навігації Перейти до пошуку

Простір елементарних подіймножина всіх можливих наслідків стохастичного експерименту. Тобто, множина елементарних подій. Зазвичай позначається літерою Ω, також S або U.

В аксіоматичному підході Колмогорова простір елементарних подій є базою ймовірнісного простору. Від природи простору елементарних подій залежить якими будуть випадкові величини на цьому просторі (неперервними чи дискретними).

Простір елементарних подій називається дискретним, якщо множина Ω скінченна або зліченна.

Довільна підмножина простору елементарних подій є подією, всі вони утворюють алгебру подій.

Приклад

Приклад 1

Припустимо, що монету підкидають один раз. Простір елементарних подій, цього експерименту має вигляд Ω = {Г, Р}, де Г означає появу герба, буква Р — появу числа. Монету підкидають двічі. Простором елементарних подій цього експерименту є множина Ω = {ГГ, ГР, РГ, РР}. Тут ГР означає, наприклад, що при першому підкиданні з'явився герб, а при другому — число.

Приклад 2

Підкидають шестигранний гральний кубик на якому вибиті очки від 1 до 6. Нас цікавить число очок, яке випало. Вважається, що може випасти одне число за раз та кубик на ребро не стає. Простором елементарних подій для цього експерименту може бути Ω = {1,2,3,4,5,6}.

Див. також

Посилання

  1. Єжов С.М. (2001). Теорія ймовірностей, математична статистика і випадкові процеси: Навчальний посібник (PDF) (укр) . К.: ВПЦ "Київський університет". Архів (PDF) оригіналу за 24 лютого 2007. Процитовано 21 червня 2010.

Джерела