Флюоресценція

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку
Флуоресценція уранового скла в ультрафіолеті.
Аескулін

Флуоресце́нція або флюоресце́нція — короткотривала (від пікосекунд до мілісекунд) люмінесценція. Виникає внаслідок: опромінення речовини світлом, йонізуючим промінням, проходження крізь неї електричного струму, при хімічних реакціях, механічному впливі тощо.

Назва походить від мінералу флюориту.

Протилежне (довготривала люмінесценція) — Фосфоресценція.

Види[ред. | ред. код]

За механізмом розрізняють такі різновиди флуоресценції: резонансну, спонтанну, вимушену та рекомбінаційну. За типом збудження розрізняють фотолюмінесценцію, рентгенолюмінесценцію, катодолюмінесценцію, хемолюмінесценцію, кріолюмінесценцію, електролюмінесценцію, триболюмінесценцію та ін.

Застосування[ред. | ред. код]

Захисні знаки в грошах[ред. | ред. код]

Оптичні відбілювачі[ред. | ред. код]

Сучасний «офісний» папір набагато біліший за свого радянського попередника завдяки додаванню речовин, що поглинають в УФ діапазоні, а випромінюють в фіолетово-блакитному, створюючи оптичне доповнення до натурального жовтуватого кольору паперу.

Біологічні дослідження[ред. | ред. код]

Флуоресценція знайшла широке застосування у прикладних біологічних дослідженнях.

Аналітична хімія[ред. | ред. код]

Сенсибілізована флюоресценція[ред. | ред. код]

Флуоресценція молекул або атомів, які енергію збудження отримали від інших молекул чи атомів, збуджених внаслідок абсорбції фотона (англ. sensitized fluorescence).

Органічні флуорофори[ред. | ред. код]

Родамін, Флуоресцеїн

Фізичні основи[ред. | ред. код]

  • Діаграма Яблонського описує перетворення системи під час флуоресценції.
  • Квантовий вихід — ефективність перетворення збудження на випромінювання зазвичай залежить від часу життя збудженого стану.
,

де Nex — кількість збуджених молекул, а Nem — кількість випромінених фотонів[1].

Добрі флуорофори (наприклад, родамін) мають квантовий вихід, близький до одиниці (100 %). Напряму виміряти кількість збуджених молекул надзвичайно важко. В лабораторній практиці вимірюють квантовий вихід відносно стандарту. Для цього вимірюють в однакових умовах флуоресценцію та поглинання досліджуваної речовини та стандарту, а обчислення проводять за формулою:

,

де I — інтегральна інтенсивність флуоресценції досліджуваної речовини в усьому спектральному діапазону, А — поглинання (абсорбція) світла на довжині хвилі збудження. Is та Аs — те ж саме, тільки для стандарту. Фs — квантовий вихід стандарту. Необхідні умови застосовності цієї формули: поглинається не надто велика частка світла (А, Аs < 0.1), спектри випромінювання (емісії) досліджуваної речовини та стандарта близькі за діапазоном (відхилення до 50 нм). Типовими стандартами є: хінін-сульфат, ароматичні вуглеводні, лужний розчин флуоресцеїну, родамін.

Стоксів зсув[ред. | ред. код]

Докладніше: Стоксів зсув
  • Різниця між довжиною хвилі поглинутого та випроміненого фотонів. Коливається в межах 20-100 нм для більшості органічних флуорофорів.

Час життя збудженого стану[ред. | ред. код]

При флуоресценції емісія фотона відбувається завдяки переходу S1S0. Такий процес проходить за час порядку наносекунд — пікосекунд (10−9−10−12 с). Час життя збудженого стану пов'язаний із квантовим виходом: невипромінювальна деактивація флуорофора зменшує квантовий вихід пропорційно зменшенню часу життя збудженого стану.

Де kf — швидкість випромінювального переходу kn — сумарна швидкість невипромінювальних переходів.

Вимірювання часу життя збудженого стану використовується для виділення різних популяцій флуорофорів, що різняться по оточенню[2]. Також на її основі розроблено мікроскопічні методи (англ. Fluorescence-lifetime imaging microscopy, FLIM)[3].

Вихід флуоресценції[ред. | ред. код]

Для даного збудженого стану певного атома — відношення числа збуджених атомів, які випускають фотон, до загального числа збуджених станів.

Див. також[ред. | ред. код]

Примітки[ред. | ред. код]

  1. Valeur, Bernard, Berberan-Santos, Mario (2012). Molecular Fluorescence: Principles and Applications. Wiley-VCH. ISBN 978-3-527-32837-6. p. 64
  2. Joseph R. Lakowicz. Principles of Fluorescence Spectroscopy 3rd edition. Springer (2006). ISBN 978-0387-31278-1.[сторінка?]
  3. Сучасні методи мікроскопії в біології і медицині / О. І. Олар, О. Ю. Микитюк, В. І. Федів // Клінічна та експериментальна патологія. - 2014. - Т. 13, № 2. - С. 212-217.

Література[ред. | ред. код]

Посилання[ред. | ред. код]