Дифракція

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Дифракція на двох щілинах

Дифра́кція — явище, що виникає при поширенні хвиль (наприклад, світлових і звукових хвиль). Суть цього явища полягає в тому, що хвиля здатна оминати перешкоди. Це зумовлює те, що хвильовий рух спостерігається в області за перешкодою, куди хвиля не може потрапити прямо. Явище пояснюється інтерференцією хвиль на краях непрозорих об'єктів або неоднорідностях між різними середовищами на шляху поширення хвилі. Прикладом може бути виникнення кольорових світлових смуг в області тіні від краю непрозорого екрана.

Дифракція добре проявляється тоді, коли розмір перешкоди на шляху хвилі порівняний з її довжиною або менший.

Дифракція акустична — відхилення від прямолінійого поширення звукових хвиль.

Дифракція на щілині[ред.ред. код]

Схема утворення областей світла й тіні при дифракції на щілині

У випадку, коли хвиля падає на екран зі щілиною, вона проникає за перешкоду завдяки дифракції, проте спостерігається відхилення від прямолінійного розповсюдження хвиль. Інтерференція хвиль за екраном призводить до виникнення темних та світлих областей, розташування яких залежить від напрямку, в якому ведеться спостереження, віддалі від екрана тощо.

Дифракція в природі та техніці[ред.ред. код]

Дифракція звукових хвиль часто спостерігається в повсякденному житті, оскільки ми чуємо звуки, які долинають до нас з-за перешкод. Легко спостерігати огинання невеликих перешкод хвилями на воді.

Дифракція і рефракція хвиль на воді

Наукові й технічні використання явища дифракції — різноманітні. Дифракційні ґратки служать для розкладу світла в спектр й для створення дзеркал (наприклад, для напівпровідникових лазерів). Дифракція рентгенівських променів, електронів та нейтронів використовується для дослідження структури кристалічних твердих тіл.

Водночас дифракція накладає обмеження на роздільну здатність оптичних приладів, наприклад, мікроскопів. Об'єкти, розміри яких менші за довжину хвилі видимого світла (400 \div 760 нм) неможливо розглянути в оптичний мікроскоп. Схоже обмеження діє в методі літографії, який широко використовується в напівпровідниковій промисловості при виробництві інтегральних схем. Тому доводиться використовувати джерела світла в ультрафіолетовій області спектру.

Дифракція світла[ред.ред. код]

Явище дифракції світла наглядно підтверджує теорію корпускулярно-хвильової природи світла.

Спостерігати дифракцію світла важко, оскільки хвилі відхиляються від перешкод на помітні кути лише за умови, що розміри перешкод приблизно дорівнюють довжині хвилі світла, а вона дуже мала.

Уперше, відкривши інтерференцію, Юнг виконав дослід з дифракції світла, за допомогою якого були вивчені довжини хвиль, що відповідають світловим променям різного кольору. Вивчення дифракції отримало своє завершення в працях Огюстена Френеля, який і побудував теорію дифракції, що в принципі дозволяє розраховувати дифракційну картину, яка виникає внаслідок огинання світлом будь-яких перешкод. Таких успіхів Френель досягнув, об'єднавши принцип Гюйгенса з ідеєю інтерференції вторинних хвиль. Принцип Гюйгенса формулюється так: дифракція виникає внаслідок інтерференції вторинних хвиль.

Див. також[ред.ред. код]

Джерела[ред.ред. код]

  • Справочник по радиоэлектронике. — М., «Энергия», 1968
  • «Физический энциклопедический словарь», — Москва, «Советская Энциклопедия», 1983
Фізика Це незавершена стаття з фізики.
Ви можете допомогти проекту, виправивши або дописавши її.