Система числення

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Двійкова
система
Шістнадцяткова
система
Десяткова
система
00000 00 00
00001 01 01
00010 02 02
00011 03 03
00100 04 04
00101 05 05
00110 06 06
00111 07 07
01000 08 08
01001 09 09
01010 0A 10
01011 0B 11
01100 0C 12
01101 0D 13
01110 0E 14
01111 0F 15
10000 10 16
10001 11 17
10010 12 18
10011 13 19
10100 14 20
10101 15 21
10110 16 22
10111 17 23
11000 18 24
11001 19 25
11010 1A 26
11011 1B 27
11100 1C 28
11101 1D 29
11110 1E 30
11111 1F 31

Системою числення, або нумерацією, називається сукупність правил і знаків, за допомогою яких можна відобразити (кодувати) будь-яке невід'ємне число. До систем числення висуваються певні вимоги, серед яких найбільш важливими є вимоги однозначного кодування невід'ємних чисел 0, 1,… з деякої їх скінченної множини — діапазону Р за скінченне число кроків і можливості виконання щодо чисел арифметичних і логічних операцій. Крім того, системи числення розв'язують задачу нумерації, тобто ефективного переходу від зображень чисел до номерів, які в даному випадку повинні мати мінімальну кількість цифр. Від вдалого чи невдалого вибору системи числення залежить ефективність розв'язання зазначених задач і її використання на практиці


Розрізняють такі типи систем числення:

  • позиційні
  • змішані
  • непозиційні

Історія виникнення систем числення[ред.ред. код]

Історично першими виникли непозиційні системи числення. Вони ґрунтуються на кількісному підході до визначення числа, який для кодування тих чи інших кількостей застосовував особливі знаки — числа. Кожному такому знаку відповідав кількісний еквівалент. Наприклад, у так званій римській нумерації знаку X відповідала кількість елементів множини, яка дорівнювала 10.

У подальшому такими знаками-числами користувалися також і для одержання інших чисел. Так, якщо перед знаком X ставилась вертикальна риска, то отримували знак IX, який означав, що від десяти треба відняти одиницю і результат буде дорівнювати 9. Знаки, подібні X, називаються вузловими. Вони широко використовувалися в первісних непозиційних системах числення. Слід ще раз зазначити, що серед цих знаків не було такого, який би відповідав нулю. Це свідчить про те, що нуль у той час ще не був сформований як число.

Кількість чисел, яку можна було одержати з допомогою непозиційного кодування, через його складність і відповідно велику кількість чисел, що потребували запам'ятовування, була обмежена кількома сотнями, і, крім того, щодо цих чисел досить важко було виконувати арифметичні й логічні операції. Тому в подальшому з розвитком науки виникла потреба в більш ефективних системах числення, які б мали прості правила кодування чисел, та легко виконували б щодо них арифметичні й логічні операції. Такі системи чисел були створені і отримали назву позиційних. Більш докладно ці системи числення будуть розглянуті нижче, тому що вони складають на сьогодні основу теорії систем числення взагалі.

Позиційна система[ред.ред. код]

У позиційних системах числення одна і та ж цифра (числовий знак) у записі числа набуває різних значень залежно від своєї позиції. Таким чином, позиція цифри має вагу у числі. Здебільшого вага кожної позиції кратна деякому натуральному числу b, b>1, яке називається основою системи числення.

Наприклад, якщо b - натуральне число (b > 1), то для представлення числа x у системі числення з основою b його подають у вигляді лінійної комбінації степенів числа b:

x = \sum_{k=0}^n a_k b^k, де a_k — цілі, 0 \leq a_k < b

Іншими словами, основа - це кількість символів, що використовуються при записуванні чисел.

Приклад

Наприклад, число «двісті чотири» представляється у десятковій системі числення у вигляді:

 204 = 2 \cdot 10^{2} + 0 \cdot 10^{1} + 4 \cdot 10^{0}

Використовуючи позиційний принцип, можна зобразити будь-яке дійсне число за допомогою усього лиш десяти цифр у їх різних комбінаціях.

Змішана система[ред.ред. код]

Змішана система числення є узагальненням системи числення з основою b і її часто відносять до позиційних систем числення. Основою змішаної системи є послідовність чисел, що зростає, \{b_k\}_{k=0}^{\infty} і кожне число x представляється як лінійна комбінація:

x = \sum_{k=0}^n a_{k}b_k, де на коефіцієнти a_{k} (цифри) накладаються деякі обмеження.

Якщо b_k=b^k для деякого b, то змішана система збігається з b-основною системою числення.

Найвідомішим прикладом змішаної системи числення є представлення часу у вигляді кількості діб, годин, хвилин і секунд. При цьому величина d днів h годин m хвилин s секунд відповідає значенню d\cdot 24\cdot 60\cdot 60 + h\cdot 60\cdot 60 + m\cdot 60 + s секунд.

Система числення Фібоначчі[ред.ред. код]

Представлення засновується на числах Фібоначчі:

x = \sum_{k=0}^n f_k F_k, де F_k — числа Фібоначчі, f_k\in\{0,1\}, при цьому у записі f_nf_{n-1}\dots f_0 не зустрічаються дві одиниці підряд.

Факторіальна система числення[ред.ред. код]

Представлення використовує факторіал натуральних чисел:

x = \sum_{k=1}^n d_k k!, де 0\leq d_k \leq k.

Біноміальна система числення[ред.ред. код]

Представлення використовує біноміальні коефіцієнти:

x = \sum_{k=1}^n {c_k\choose k}, де 0\leq c_1 < c_2 < \dots < c_n.

Система числення майя[ред.ред. код]

Майя використовували двадцяткову систему числення за одним винятком: у другому розряді було не 20, а 18 ступенів, тобто після числа (17)(19) відразу йшло число (1)(0)(0). Це було зроблено для полегшення розрахунків календарного циклу, оскільки (1)(0)(0) дорівнювало 360, що приблизно дорівнює кількості днів у сонячному році.

Непозиційна система[ред.ред. код]

У непозиційних системах числення величина, яку позначає цифра, не залежить від позиції її у числі. При цьому система може накладати обмеження на позиції цифр, наприклад, щоб вони були розташовані по спаданню, чи згруповані за значенням. Проте це не є принциповою умовою для розуміння записаних такими системами чисел.

Типовим прикладом непозиційної системи числення є римська система числення, в якій у якості цифр використовуються латинські букви:

Римська цифра Десяткове значення
I 1
V 5
X 10
L 50
C 100
D 500
M 1000

Наприклад, VII = 5 + 1 + 1 = 7. Тут символи V і I означають 5 і 1, відповідно, незалежно від місця їх у числі.

Застосування[ред.ред. код]

У нумізматиці особливо велику вагу мають десяткова система, дванадцяткова (дуодецимальна), четвертна та шісткова системи. У інформаційних технологіях застосовуються двійкова, десяткова, вісімкова, та шістнадцяткова системи.

Див. також[ред.ред. код]

Література[ред.ред. код]