Ціла частина числа

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Графік функції або

Ціла частина дійсного числа  — найбільше ціле число, яке не більше ніж . Ціла частина числа зазвичай позначається як .

Графік функції

В інформатиці поряд з функцією ціла частина використовують функції підлога (англ. floor) та стеля (англ. ceiling). Функція підлога позначається як та збігається з цілою частиною, функція стелі позначається як та дорівнює найменшому цілому числу, яке не менше за .

Визначення за допомогою нерівностей такі:

Позначення та приклади[ред.ред. код]

Для цілої частини числа довгий час використовувалось позначення , введене Гаусом.

В 1962 році Кеннет Айверсон запропонував заокруглення числа до найближчого цілого в меншу і більшу сторони називати «підлога» і «стеля» і позначати і відповідно[1]. У цих позначеннях .

В сучасній математиці вживають обидва позначення, і , однак існує тенденція переходу до термінології і позначенням Айверсона. Одна з причин цього — потенційна неоднозначність поняття «ціла частина числа»[1]. Наприклад, ціла частина числа 2,7 рівна 2, але можливі дві думки на те, як визначити цілу частину числа −2,7. Відповідно до даного в цій статті визначення , однак в деяких калькуляторах наявна функція цілої частини числа INT, для від'ємних чисел визначена як INT(-x) = -INT(x), таким чином INT(-2,7) = −2. В термінології Айверсона відсутні можливі неоднозначності:

Примітки[ред.ред. код]

  1. а б Р. Грэхем, Д. Кнут, О. Паташник. Конкретная математика. — С. 88.

Див. також[ред.ред. код]


Сигма Це незавершена стаття з математики.
Ви можете допомогти проекту, виправивши або дописавши її.