Замикання (математика)

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук

В математиці, множина є замкнутою відносно деякої операці, якщо результатом виконання цієї операції над елементами множини завжди буде елемент цієї множини.

Наприклад, дійсні числа є замкнутими відносно віднімання, а натуральні числа — ні.

Якщо множина є замкнутою відносно операції, то кажуть що вона задовільняє властивість замикання.

Сучасний теоретико-множинний підхід зазвичай визначає операції як відповідність між множинами, в такому випадку поняття замикання є не потрібним, хоча воно має зміст для підмножин.

Наприклад, дійсні числа є замкнутими відносно віднімання, а підмножина натуральних чисел — ні.

Якщо множина S не є замкненою відносно деякої операції, то шукають найменшу замкнену множину, що містить S. Таку множину називають замиканням S відносно цієї операції.

Множина S повинна бути підмножиною деякої замкненої множини, щоб можна було знайти замикання.

Наприклад: замиканням відносно віднімання для натуральних чисел, що є підмножиною дійсних чисел, будуть цілі числа.

Також існує поняття замикання множини відносно деякого відношення.

Оператор замикання[ред.ред. код]

Докладніше у статті Оператор замикання

Якщо задано операцію на множині S, то можна визначити замикання для будь-якої підмножини X.

Наприклад, замиканням підмножини групи є підгрупа, що породжена цією підмножиною.

Можна визначити на множині всіх підмножин S оператор замикання (відносно цієї операції) cl: 2S → 2S, що матиме такі властивості:

Дивись також[ред.ред. код]