Дія Ейнштейна — Гільберта — дія , яка дозволяє виводити рівняння Ейнштейна у загальній теорії відносності через принцип найменшої дії . Гравітаційна частина дії дається формулою[ 1]
S
=
1
2
κ
∫
R
−
g
d
4
x
,
{\displaystyle S={1 \over 2\kappa }\int R{\sqrt {-g}}\,\mathrm {d} ^{4}x,}
де
g
=
det
(
g
μ
ν
)
{\displaystyle g=\det(g_{\mu \nu })}
— визначник метричного тензора ,
R
{\displaystyle R}
— скаляр Річі , а
κ
=
8
π
G
c
−
4
{\displaystyle \kappa =8\pi Gc^{-4}}
— гравітаційна стала Ейнштейна (
G
{\displaystyle G}
— гравітаційна стала ,
c
{\displaystyle c}
— швидкість світла у вакуумі). Застосування рівняння Ейлера — Лагранжа до дії Ейнштейна — Гільберта дає рівняння Ейнштейна .
Вперше цю дію запропонував Давид Гільберт у 1915 році[ 2] .
Виведення рівнянь руху з дії має кілька переваг. По-перше, це дозволяє легко поєднати загальну теорію відносності з іншими класичними теоріями поля (наприклад, теорією Максвелла ), які також сформульовані в термінах дії. Крім того, симетрії дії дозволяють легко ідентифікувати збережувані величини за допомогою теореми Нетер .
Рівняння Ейнштейна в присутності матерії отримують додаванням дії матерії до дії Ейнштейна — Гільберта. Припустимо, що повна дія задана членом Ейнштейна — Гільберта плюс член
L
M
{\displaystyle {\mathcal {L}}_{\mathrm {M} }}
, який описує будь-які поля матерії, наявні в теорії:
S
=
∫
[
1
2
κ
R
+
L
M
]
−
g
d
4
x
{\displaystyle S=\int \left[{\frac {1}{2\kappa }}R+{\mathcal {L}}_{\mathrm {M} }\right]{\sqrt {-g}}\,\mathrm {d} ^{4}x}
.
(1 )
Тоді принцип найменшої дії говорить, що для виведення фізичного закону ми повинні вимагати, щоб варіація цієї дії зі змінами оберненої метрики дорівнювала нулю, що дає
0
=
δ
S
=
∫
[
1
2
κ
δ
(
−
g
R
)
δ
g
μ
ν
+
δ
(
−
g
L
M
)
δ
g
μ
ν
]
δ
g
μ
ν
d
4
x
=
∫
[
1
2
κ
(
δ
R
δ
g
μ
ν
+
R
−
g
δ
−
g
δ
g
μ
ν
)
+
1
−
g
δ
(
−
g
L
M
)
δ
g
μ
ν
]
δ
g
μ
ν
−
g
d
4
x
{\displaystyle {\begin{aligned}0&=\delta S\\&=\int \left[{\frac {1}{2\kappa }}{\frac {\delta \left({\sqrt {-g}}R\right)}{\delta g^{\mu \nu }}}+{\frac {\delta \left({\sqrt {-g}}{\mathcal {L}}_{\mathrm {M} }\right)}{\delta g^{\mu \nu }}}\right]\delta g^{\mu \nu }\,\mathrm {d} ^{4}x\\&=\int \left[{\frac {1}{2\kappa }}\left({\frac {\delta R}{\delta g^{\mu \nu }}}+{\frac {R}{\sqrt {-g}}}{\frac {\delta {\sqrt {-g}}}{\delta g^{\mu \nu }}}\right)+{\frac {1}{\sqrt {-g}}}{\frac {\delta \left({\sqrt {-g}}{\mathcal {L}}_{\mathrm {M} }\right)}{\delta g^{\mu \nu }}}\right]\delta g^{\mu \nu }{\sqrt {-g}}\,\mathrm {d} ^{4}x\end{aligned}}}
.
Оскільки це рівняння має виконуватися для будь-якої варіації
δ
g
μ
ν
{\displaystyle \delta g^{\mu \nu }}
, то
δ
R
δ
g
μ
ν
+
R
−
g
δ
−
g
δ
g
μ
ν
=
−
2
κ
1
−
g
δ
(
−
g
L
M
)
δ
g
μ
ν
{\displaystyle {\frac {\delta R}{\delta g^{\mu \nu }}}+{\frac {R}{\sqrt {-g}}}{\frac {\delta {\sqrt {-g}}}{\delta g^{\mu \nu }}}=-2\kappa {\frac {1}{\sqrt {-g}}}{\frac {\delta ({\sqrt {-g}}{\mathcal {L}}_{\mathrm {M} })}{\delta g^{\mu \nu }}}}
(2 )
Права частина цього рівняння руху (за визначенням) пропорційна тензору енергії-імпульсу [ 3] ,
T
μ
ν
:=
−
2
−
g
δ
(
−
g
L
M
)
δ
g
μ
ν
=
−
2
δ
L
M
δ
g
μ
ν
+
g
μ
ν
L
M
{\displaystyle T_{\mu \nu }:={\frac {-2}{\sqrt {-g}}}{\frac {\delta ({\sqrt {-g}}{\mathcal {L}}_{\mathrm {M} })}{\delta g^{\mu \nu }}}=-2{\frac {\delta {\mathcal {L}}_{\mathrm {M} }}{\delta g^{\mu \nu }}}+g_{\mu \nu }{\mathcal {L}}_{\mathrm {M} }}
.
Щоб обчислити ліву частину рівняння, нам потрібні варіації скаляра Річі
R
{\displaystyle R}
і визначника метрики. Їх можна отримати за допомогою стандартних розрахунків, таких як наведені нижче розрахунки на основі підручника Керролла (2004)[ 4] .
Варіація скаляра Річі випливає з варіації тензора кривини Рімана , а потім тензора кривини Річі .
Перший крок фіксується рівністю Палатіні [en]
δ
R
σ
ν
≡
δ
R
ρ
σ
ρ
ν
=
∇
ρ
(
δ
Γ
ν
σ
ρ
)
−
∇
ν
(
δ
Γ
ρ
σ
ρ
)
{\displaystyle \delta R_{\sigma \nu }\equiv \delta {R^{\rho }}_{\sigma \rho \nu }=\nabla _{\rho }\left(\delta \Gamma _{\nu \sigma }^{\rho }\right)-\nabla _{\nu }\left(\delta \Gamma _{\rho \sigma }^{\rho }\right)}
.
Використовуючи правило добутку, варіація скаляра Річі
R
=
g
σ
ν
R
σ
ν
{\displaystyle R=g^{\sigma \nu }R_{\sigma \nu }}
перетворюються на
δ
R
=
R
σ
ν
δ
g
σ
ν
+
g
σ
ν
δ
R
σ
ν
=
R
σ
ν
δ
g
σ
ν
+
∇
ρ
(
g
σ
ν
δ
Γ
ν
σ
ρ
−
g
σ
ρ
δ
Γ
μ
σ
μ
)
,
{\displaystyle {\begin{aligned}\delta R&=R_{\sigma \nu }\delta g^{\sigma \nu }+g^{\sigma \nu }\delta R_{\sigma \nu }\\&=R_{\sigma \nu }\delta g^{\sigma \nu }+\nabla _{\rho }\left(g^{\sigma \nu }\delta \Gamma _{\nu \sigma }^{\rho }-g^{\sigma \rho }\delta \Gamma _{\mu \sigma }^{\mu }\right),\end{aligned}}}
де ми також використали метричну зв'язність
∇
σ
g
μ
ν
=
0
{\displaystyle \nabla _{\sigma }g^{\mu \nu }=0}
і перейменували індекси підсумовування
(
ρ
,
ν
)
→
(
μ
,
ρ
)
{\displaystyle (\rho ,\nu )\rightarrow (\mu ,\rho )}
в останньому члені.
При множенні на
−
g
{\displaystyle {\sqrt {-g}}}
, член
∇
ρ
(
g
σ
ν
δ
Γ
ν
σ
ρ
−
g
σ
ρ
δ
Γ
μ
σ
μ
)
{\displaystyle \nabla _{\rho }\left(g^{\sigma \nu }\delta \Gamma _{\nu \sigma }^{\rho }-g^{\sigma \rho }\delta \Gamma _{\mu \sigma }^{\mu }\right)}
стає повною похідною , оскільки для будь-якого вектора
A
λ
{\displaystyle A^{\lambda }}
і будь-якої тензорної густини
−
g
A
λ
{\displaystyle {\sqrt {-g}}\,A^{\lambda }}
, ми маємо
−
g
A
;
λ
λ
=
(
−
g
A
λ
)
;
λ
=
(
−
g
A
λ
)
,
λ
{\displaystyle {\sqrt {-g}}\,A_{;\lambda }^{\lambda }=\left({\sqrt {-g}}\,A^{\lambda }\right)_{;\lambda }=\left({\sqrt {-g}}\,A^{\lambda }\right)_{,\lambda }}
або
−
g
∇
μ
A
μ
=
∇
μ
(
−
g
A
μ
)
=
∂
μ
(
−
g
A
μ
)
{\displaystyle {\sqrt {-g}}\,\nabla _{\mu }A^{\mu }=\nabla _{\mu }\left({\sqrt {-g}}\,A^{\mu }\right)=\partial _{\mu }\left({\sqrt {-g}}\,A^{\mu }\right)}
.
За теоремою Стокса , така повна похідна при інтегруванні дає лише граничний член. Цей граничний член в загальному випадку не дорівнює нулю, оскільки підінтегральна функція залежить не тільки від
δ
g
μ
ν
,
{\displaystyle \delta g^{\mu \nu },}
а й від його часткових похідних
∂
λ
δ
g
μ
ν
≡
δ
∂
λ
g
μ
ν
{\displaystyle \partial _{\lambda }\,\delta g^{\mu \nu }\equiv \delta \,\partial _{\lambda }g^{\mu \nu }}
. Подробиці наведені в статті Граничний член Гіббонса — Гокінга — Йорка [en] . Однак коли варіація метрики
δ
g
μ
ν
{\displaystyle \delta g^{\mu \nu }}
зникає в околицях границі або коли границі немає, цей член не дає внеску у варіацію дії. Таким чином, ми можемо забути про цей член і просто отримати
δ
R
δ
g
μ
ν
=
R
μ
ν
{\displaystyle {\frac {\delta R}{\delta g^{\mu \nu }}}=R_{\mu \nu }}
.
(3 )
для подій не на замиканні границі.
Формула Якобі [en] , правило диференціювання визначника , дає:
δ
g
=
δ
det
(
g
μ
ν
)
=
g
g
μ
ν
δ
g
μ
ν
{\displaystyle \delta g=\delta \det(g_{\mu \nu })=gg^{\mu \nu }\delta g_{\mu \nu }}
,
тобто можна перейти в систему координат, де
g
μ
ν
{\displaystyle g_{\mu \nu }}
діагональна, а потім застосувати правило добутку, щоб продиференціювати добуток членів на головній діагоналі. Використовуючи це, ми отримуємо
δ
−
g
=
−
1
2
−
g
δ
g
=
1
2
−
g
(
g
μ
ν
δ
g
μ
ν
)
=
−
1
2
−
g
(
g
μ
ν
δ
g
μ
ν
)
{\displaystyle \delta {\sqrt {-g}}=-{\frac {1}{2{\sqrt {-g}}}}\delta g={\frac {1}{2}}{\sqrt {-g}}\left(g^{\mu \nu }\delta g_{\mu \nu }\right)=-{\frac {1}{2}}{\sqrt {-g}}\left(g_{\mu \nu }\delta g^{\mu \nu }\right)}
.
В останній рівності ми використали той факт, що
g
μ
ν
δ
g
μ
ν
=
−
g
μ
ν
δ
g
μ
ν
{\displaystyle g_{\mu \nu }\delta g^{\mu \nu }=-g^{\mu \nu }\delta g_{\mu \nu }}
,
що випливає з правила диференціювання оберненої матриці
δ
g
μ
ν
=
−
g
μ
α
(
δ
g
α
β
)
g
β
ν
{\displaystyle \delta g^{\mu \nu }=-g^{\mu \alpha }\left(\delta g_{\alpha \beta }\right)g^{\beta \nu }}
.
Таким чином робимо висновок
1
−
g
δ
−
g
δ
g
μ
ν
=
−
1
2
g
μ
ν
{\displaystyle {\frac {1}{\sqrt {-g}}}{\frac {\delta {\sqrt {-g}}}{\delta g^{\mu \nu }}}=-{\frac {1}{2}}g_{\mu \nu }}
.
(4 )
Тепер, коли ми маємо в своєму розпорядженні всі необхідні варіації, ми можемо підставити (3 ) і (4 ) в рівняння руху (2 ) для метричного поля, отримуючи
R
μ
ν
−
1
2
g
μ
ν
R
=
8
π
G
c
4
T
μ
ν
{\displaystyle R_{\mu \nu }-{\frac {1}{2}}g_{\mu \nu }R={\frac {8\pi G}{c^{4}}}T_{\mu \nu }}
,
(5 )
яке є рівнянням поля Ейнштейна , а
κ
=
8
π
G
c
4
{\displaystyle \kappa ={\frac {8\pi G}{c^{4}}}}
було обрано таким чином, щоб нерелятивістський граничний випадок давав звичайну форму ньютонівського закону всесвітнього тяжіння , де
G
{\displaystyle G}
є гравітаційною сталою .
Коли в лагранжіан включена космологічна стала Λ, дія стає
S
=
∫
[
1
2
κ
(
R
−
2
Λ
)
+
L
M
]
−
g
d
4
x
{\displaystyle S=\int \left[{\frac {1}{2\kappa }}(R-2\Lambda )+{\mathcal {L}}_{\mathrm {M} }\right]{\sqrt {-g}}\,\mathrm {d} ^{4}x}
.
Беручи варіації за зворотною метрикою, отримуємо
δ
S
=
∫
[
−
g
2
κ
δ
R
δ
g
μ
ν
+
R
2
κ
δ
−
g
δ
g
μ
ν
−
Λ
κ
δ
−
g
δ
g
μ
ν
+
−
g
δ
L
M
δ
g
μ
ν
+
L
M
δ
−
g
δ
g
μ
ν
]
δ
g
μ
ν
d
4
x
=
∫
[
1
2
κ
δ
R
δ
g
μ
ν
+
R
2
κ
1
−
g
δ
−
g
δ
g
μ
ν
−
Λ
κ
1
−
g
δ
−
g
δ
g
μ
ν
+
δ
L
M
δ
g
μ
ν
+
L
M
−
g
δ
−
g
δ
g
μ
ν
]
δ
g
μ
ν
−
g
d
4
x
{\displaystyle {\begin{aligned}\delta S&=\int \left[{\frac {\sqrt {-g}}{2\kappa }}{\frac {\delta R}{\delta g^{\mu \nu }}}+{\frac {R}{2\kappa }}{\frac {\delta {\sqrt {-g}}}{\delta g^{\mu \nu }}}-{\frac {\Lambda }{\kappa }}{\frac {\delta {\sqrt {-g}}}{\delta g^{\mu \nu }}}+{\sqrt {-g}}{\frac {\delta {\mathcal {L}}_{\mathrm {M} }}{\delta g^{\mu \nu }}}+{\mathcal {L}}_{\mathrm {M} }{\frac {\delta {\sqrt {-g}}}{\delta g^{\mu \nu }}}\right]\delta g^{\mu \nu }\mathrm {d} ^{4}x\\&=\int \left[{\frac {1}{2\kappa }}{\frac {\delta R}{\delta g^{\mu \nu }}}+{\frac {R}{2\kappa }}{\frac {1}{\sqrt {-g}}}{\frac {\delta {\sqrt {-g}}}{\delta g^{\mu \nu }}}-{\frac {\Lambda }{\kappa }}{\frac {1}{\sqrt {-g}}}{\frac {\delta {\sqrt {-g}}}{\delta g^{\mu \nu }}}+{\frac {\delta {\mathcal {L}}_{\mathrm {M} }}{\delta g^{\mu \nu }}}+{\frac {{\mathcal {L}}_{\mathrm {M} }}{\sqrt {-g}}}{\frac {\delta {\sqrt {-g}}}{\delta g^{\mu \nu }}}\right]\delta g^{\mu \nu }{\sqrt {-g}}\,\mathrm {d} ^{4}x\end{aligned}}}
За принципом найменшої дії ,
0
=
δ
S
=
1
2
κ
δ
R
δ
g
μ
ν
+
R
2
κ
1
−
g
δ
−
g
δ
g
μ
ν
−
Λ
κ
1
−
g
δ
−
g
δ
g
μ
ν
+
δ
L
M
δ
g
μ
ν
+
L
M
−
g
δ
−
g
δ
g
μ
ν
{\displaystyle 0=\delta S={\frac {1}{2\kappa }}{\frac {\delta R}{\delta g^{\mu \nu }}}+{\frac {R}{2\kappa }}{\frac {1}{\sqrt {-g}}}{\frac {\delta {\sqrt {-g}}}{\delta g^{\mu \nu }}}-{\frac {\Lambda }{\kappa }}{\frac {1}{\sqrt {-g}}}{\frac {\delta {\sqrt {-g}}}{\delta g^{\mu \nu }}}+{\frac {\delta {\mathcal {L}}_{\mathrm {M} }}{\delta g^{\mu \nu }}}+{\frac {{\mathcal {L}}_{\mathrm {M} }}{\sqrt {-g}}}{\frac {\delta {\sqrt {-g}}}{\delta g^{\mu \nu }}}}
Комбінуючи цей вираз із результатами, отриманими раніше:
δ
R
δ
g
μ
ν
=
R
μ
ν
1
−
g
δ
−
g
δ
g
μ
ν
=
−
g
μ
ν
2
T
μ
ν
=
L
M
g
μ
ν
−
2
δ
L
M
δ
g
μ
ν
{\displaystyle {\begin{aligned}{\frac {\delta R}{\delta g^{\mu \nu }}}&=R_{\mu \nu }\\{\frac {1}{\sqrt {-g}}}{\frac {\delta {\sqrt {-g}}}{\delta g^{\mu \nu }}}&={\frac {-g_{\mu \nu }}{2}}\\T_{\mu \nu }&={\mathcal {L}}_{\mathrm {M} }g_{\mu \nu }-2{\frac {\delta {\mathcal {L}}_{\mathrm {M} }}{\delta g^{\mu \nu }}}\end{aligned}}}
ми можемо отримати
1
2
κ
R
μ
ν
+
R
2
κ
−
g
μ
ν
2
−
Λ
κ
−
g
μ
ν
2
+
(
δ
L
M
δ
g
μ
ν
+
L
M
−
g
μ
ν
2
)
=
0
R
μ
ν
−
R
2
g
μ
ν
+
Λ
g
μ
ν
+
κ
(
2
δ
L
M
δ
g
μ
ν
−
L
M
g
μ
ν
)
=
0
R
μ
ν
−
R
2
g
μ
ν
+
Λ
g
μ
ν
−
κ
T
μ
ν
=
0
{\displaystyle {\begin{aligned}{\frac {1}{2\kappa }}R_{\mu \nu }+{\frac {R}{2\kappa }}{\frac {-g_{\mu \nu }}{2}}-{\frac {\Lambda }{\kappa }}{\frac {-g_{\mu \nu }}{2}}+\left({\frac {\delta {\mathcal {L}}_{\mathrm {M} }}{\delta g^{\mu \nu }}}+{\mathcal {L}}_{\mathrm {M} }{\frac {-g_{\mu \nu }}{2}}\right)&=0\\R_{\mu \nu }-{\frac {R}{2}}g_{\mu \nu }+\Lambda g_{\mu \nu }+\kappa \left(2{\frac {\delta {\mathcal {L}}_{\mathrm {M} }}{\delta g^{\mu \nu }}}-{\mathcal {L}}_{\mathrm {M} }g_{\mu \nu }\right)&=0\\R_{\mu \nu }-{\frac {R}{2}}g_{\mu \nu }+\Lambda g_{\mu \nu }-\kappa T_{\mu \nu }&=0\end{aligned}}}
З
κ
=
8
π
G
c
4
{\textstyle \kappa ={\frac {8\pi G}{c^{4}}}}
вираз стає рівнянням поля з космологічною сталою :
R
μ
ν
−
1
2
g
μ
ν
R
+
Λ
g
μ
ν
=
8
π
G
c
4
T
μ
ν
.
{\displaystyle R_{\mu \nu }-{\frac {1}{2}}g_{\mu \nu }R+\Lambda g_{\mu \nu }={\frac {8\pi G}{c^{4}}}T_{\mu \nu }.}
↑ Feynman, Richard P. (1995). Feynman Lectures on Gravitation . Addison-Wesley. p. 136, eq. (10.1.2). ISBN 0-201-62734-5 .
↑ Die Grundlagen der Physik [Foundations of Physics], Nachrichten von der Gesellschaft der Wissenschaften zu Göttingen – Mathematisch-Physikalische Klasse (German) , 3 , 1915: 395—407
↑ Blau, Matthias (27 липня 2020), Lecture Notes on General Relativity (PDF) , с. 196
↑ Carroll, Sean M. (2004), Spacetime and Geometry: An Introduction to General Relativity , San Francisco: Addison-Wesley, ISBN 978-0-8053-8732-2
Misner, Charles W. ; Thorne, Kip. S. ; Wheeler, John A. (1973), Gravitation , W. H. Freeman, ISBN 978-0-7167-0344-0
Wald, Robert M. (1984), General Relativity , University of Chicago Press, ISBN 978-0-226-87033-5
Carroll, Sean M. (2004), Spacetime and Geometry: An Introduction to General Relativity , San Francisco: Addison-Wesley, ISBN 978-0-8053-8732-2
Hilbert, D. (1915) Die Grundlagen der Physik (German original for free) (English translation for $25) , Konigl. Gesell. d. Wiss. Göttingen, Nachr. Math.-Phys. Kl. 395—407
Hazewinkel, Michiel, ред. (2001), constant Cosmological constant , Математична енциклопедія , Springer , ISBN 978-1-55608-010-4
Feynman, Richard P. (1995), Feynman Lectures on Gravitation , Addison-Wesley, ISBN 0-201-62734-5
Christopher M. Hirata Lecture 33: Lagrangian formulation of GR (27 April 2012).