Ортогональні поліноми
Якобі
Відкриті
Карла Густава Якоба Якобі в 1859 році
Формула
P
n
(
α
,
β
)
(
z
)
=
Γ
(
α
+
n
+
1
)
n
!
Γ
(
α
+
β
+
n
+
1
)
∑
m
=
0
n
(
n
m
)
Γ
(
α
+
β
+
n
+
m
+
1
)
Γ
(
α
+
m
+
1
)
(
z
−
1
2
)
m
{\displaystyle P_{n}^{(\alpha ,\beta )}(z)={\frac {\Gamma (\alpha +n+1)}{n!\,\Gamma (\alpha +\beta +n+1)}}\sum _{m=0}^{n}{n \choose m}{\frac {\Gamma (\alpha +\beta +n+m+1)}{\Gamma (\alpha +m+1)}}\left({\frac {z-1}{2}}\right)^{m}}
Диференціальне рівняння
(
1
−
x
2
)
y
″
+
(
β
−
α
−
(
α
+
β
+
2
)
x
)
y
′
+
n
(
n
+
α
+
β
+
1
)
y
=
0.
{\displaystyle (1-x^{2})y''+(\beta -\alpha -(\alpha +\beta +2)x)y'+n(n+\alpha +\beta +1)y=0.\,}
Визначені на
[
−
1
,
1
]
{\displaystyle \ [-1,1]}
Вага
(
1
−
x
)
α
(
1
+
x
)
β
{\displaystyle (1-x)^{\alpha }(1+x)^{\beta }\,\!}
Норма
2
α
+
β
+
1
2
n
+
α
+
β
+
1
Γ
(
n
+
α
+
1
)
Γ
(
n
+
β
+
1
)
Γ
(
n
+
α
+
β
+
1
)
n
!
{\displaystyle {\frac {2^{\alpha +\beta +1}}{2n+\alpha +\beta +1}}{\frac {\Gamma (n+\alpha +1)\Gamma (n+\beta +1)}{\Gamma (n+\alpha +\beta +1)n!}}}
Примітки
Поліноми Якобі — це клас ортогональних поліномів . Вони названі на честь Карла Густава Якоба Якобі .
Вони походять з гіпергеометричних функцій у тих випадках, коли наступні ряди кінцеві:
P
n
(
α
,
β
)
(
z
)
=
(
α
+
1
)
n
n
!
2
F
1
(
−
n
,
1
+
α
+
β
+
n
;
α
+
1
;
1
−
z
2
)
,
{\displaystyle P_{n}^{(\alpha ,\beta )}(z)={\frac {(\alpha +1)_{n}}{n!}}\,_{2}F_{1}\left(-n,1+\alpha +\beta +n;\alpha +1;{\frac {1-z}{2}}\right),}
де
(
α
+
1
)
n
{\displaystyle (\alpha +1)_{n}}
є символом Похгаммера (для зростаючого факторіалу), (Абрамович і Стегун стор.561 [Архівовано 17 серпня 2005 у Wayback Machine .] ) і, таким чином, явний вираз
P
n
(
α
,
β
)
(
z
)
=
Γ
(
α
+
n
+
1
)
n
!
Γ
(
α
+
β
+
n
+
1
)
∑
m
=
0
n
(
n
m
)
Γ
(
α
+
β
+
n
+
m
+
1
)
Γ
(
α
+
m
+
1
)
(
z
−
1
2
)
m
,
{\displaystyle P_{n}^{(\alpha ,\beta )}(z)={\frac {\Gamma (\alpha +n+1)}{n!\,\Gamma (\alpha +\beta +n+1)}}\sum _{m=0}^{n}{n \choose m}{\frac {\Gamma (\alpha +\beta +n+m+1)}{\Gamma (\alpha +m+1)}}\left({\frac {z-1}{2}}\right)^{m},}
Звідки одне з кінцевих значень наступне.
P
n
(
α
,
β
)
(
1
)
=
(
n
+
α
n
)
.
{\displaystyle P_{n}^{(\alpha ,\beta )}(1)={n+\alpha \choose n}.}
Для цілих
n
{\displaystyle n\,}
(
z
n
)
=
Γ
(
z
+
1
)
Γ
(
n
+
1
)
Γ
(
z
−
n
+
1
)
,
{\displaystyle {z \choose n}={\frac {\Gamma (z+1)}{\Gamma (n+1)\Gamma (z-n+1)}},}
де
Γ
(
z
)
{\displaystyle \Gamma (z)\,}
— звичайна Гамма-функція , і
(
z
n
)
=
0
for
n
<
0.
{\displaystyle {z \choose n}=0\quad {\hbox{for}}\quad n<0.}
Ці поліноми задовольняють умові ортогональності.
∫
−
1
1
(
1
−
x
)
α
(
1
+
x
)
β
P
m
(
α
,
β
)
(
x
)
P
n
(
α
,
β
)
(
x
)
d
x
=
2
α
+
β
+
1
2
n
+
α
+
β
+
1
Γ
(
n
+
α
+
1
)
Γ
(
n
+
β
+
1
)
Γ
(
n
+
α
+
β
+
1
)
n
!
δ
n
m
{\displaystyle \int _{-1}^{1}(1-x)^{\alpha }(1+x)^{\beta }P_{m}^{(\alpha ,\beta )}(x)P_{n}^{(\alpha ,\beta )}(x)\;dx={\frac {2^{\alpha +\beta +1}}{2n+\alpha +\beta +1}}{\frac {\Gamma (n+\alpha +1)\Gamma (n+\beta +1)}{\Gamma (n+\alpha +\beta +1)n!}}\delta _{nm}}
для
α
>
−
1
{\displaystyle \alpha >-1}
і
β
>
−
1
{\displaystyle \beta >-1}
.
Існує відношення сіметрії для поліномів Якобі.
P
n
(
α
,
β
)
(
−
z
)
=
(
−
1
)
n
P
n
(
β
,
α
)
(
z
)
;
{\displaystyle P_{n}^{(\alpha ,\beta )}(-z)=(-1)^{n}P_{n}^{(\beta ,\alpha )}(z);}
а тому інше значення поліномів:
P
n
(
α
,
β
)
(
−
1
)
=
(
−
1
)
n
(
n
+
β
n
)
.
{\displaystyle P_{n}^{(\alpha ,\beta )}(-1)=(-1)^{n}{n+\beta \choose n}.}
Для дійсного
x
{\displaystyle x}
поліном Якобі може бути записаний наступним чином.
P
n
(
α
,
β
)
(
x
)
=
∑
s
(
n
+
α
s
)
(
n
+
β
n
−
s
)
(
x
−
1
2
)
n
−
s
(
x
+
1
2
)
s
{\displaystyle P_{n}^{(\alpha ,\beta )}(x)=\sum _{s}{n+\alpha \choose s}{n+\beta \choose n-s}\left({\frac {x-1}{2}}\right)^{n-s}\left({\frac {x+1}{2}}\right)^{s}}
де
s
≥
0
{\displaystyle s\geq 0\,}
і
n
−
s
≥
0
{\displaystyle n-s\geq 0\,}
.
У спеціальному випадку, коли
n
{\displaystyle n}
,
n
+
α
{\displaystyle n+\alpha }
,
n
+
β
{\displaystyle n+\beta }
і
n
+
α
+
β
{\displaystyle n+\alpha +\beta }
— невід'ємні цілі, поліном Якобі може приймати наступний вигляд
P
n
(
α
,
β
)
(
x
)
=
(
n
+
α
)
!
(
n
+
β
)
!
∑
s
[
s
!
(
n
+
α
−
s
)
!
(
β
+
s
)
!
(
n
−
s
)
!
]
−
1
(
x
−
1
2
)
n
−
s
(
x
+
1
2
)
s
.
{\displaystyle P_{n}^{(\alpha ,\beta )}(x)=(n+\alpha )!(n+\beta )!\sum _{s}\left[s!(n+\alpha -s)!(\beta +s)!(n-s)!\right]^{-1}\left({\frac {x-1}{2}}\right)^{n-s}\left({\frac {x+1}{2}}\right)^{s}.}
Сума береться по всім цілим значенням
s
{\displaystyle s}
, для яких множники є невід'ємними.
Ця формула дозволяє виразити d-матрицю Вігнера
d
m
′
m
j
(
ϕ
)
{\displaystyle d_{m'm}^{j}(\phi )\;}
(
0
≤
ϕ
≤
4
π
{\displaystyle 0\leq \phi \leq 4\pi }
) у термінах поліномів Якобі[ 1]
d
m
′
m
j
(
ϕ
)
=
[
(
j
+
m
)
!
(
j
−
m
)
!
(
j
+
m
′
)
!
(
j
−
m
′
)
!
]
1
/
2
(
sin
ϕ
2
)
m
−
m
′
(
cos
ϕ
2
)
m
+
m
′
P
j
−
m
(
m
−
m
′
,
m
+
m
′
)
(
cos
ϕ
)
.
{\displaystyle d_{m'm}^{j}(\phi )=\left[{\frac {(j+m)!(j-m)!}{(j+m')!(j-m')!}}\right]^{1/2}\left(\sin {\frac {\phi }{2}}\right)^{m-m'}\left(\cos {\frac {\phi }{2}}\right)^{m+m'}P_{j-m}^{(m-m',m+m')}(\cos \phi ).}
k -та похідна явного виразу призводить до
d
k
d
z
k
P
n
(
α
,
β
)
(
z
)
=
Γ
(
α
+
β
+
n
+
1
+
k
)
2
k
Γ
(
α
+
β
+
n
+
1
)
P
n
−
k
(
α
+
k
,
β
+
k
)
(
z
)
.
{\displaystyle {\frac {\mathrm {d} ^{k}}{\mathrm {d} z^{k}}}P_{n}^{(\alpha ,\beta )}(z)={\frac {\Gamma (\alpha +\beta +n+1+k)}{2^{k}\Gamma (\alpha +\beta +n+1)}}P_{n-k}^{(\alpha +k,\beta +k)}(z).}
↑ L. C. Biedenharn and J. D. Louck,
Angular Momentum in Quantum Physics , Addison-Wesley, Reading, (1981)
Andrews, George E.; Askey, Richard; Roy, Ranjan (1999), Special functions , Encyclopedia of Mathematics and its Applications, т. 71, Cambridge University Press, ISBN 978-0-521-62321-6; 978-0-521-78988-2 , MR 1688958
Koornwinder, Tom H.; Wong, Roderick S. C.; Koekoek, Roelof; Swarttouw, René F., Orthogonal Polynomials , NIST Handbook of Mathematical Functions, Cambridge University Press, ISBN 978-0521192255