Алгебричний многовид
В алгебричній геометрії алгебричний многовид — множина точок, координати яких задовольняють деякій системі поліноміальних рівнянь.
Розглядаються чотири види алгебричних многовидів: афінні многовиди, квазі-афінні многовиди, проєктивні многовиди і квазі-проєктивні многовиди.
Нехай є алгебрично замкнуте поле і — n-вимірний афінний простір над . Многочлени можна розглядати як функції з , зі значеннями в . Для кожного можна визначити підмножину , в якій значення всіх поліномів з множини рівне нулю:
Підмножина , множини називається афінною алгебричною множиною, якщо для деякої . Непорожня афінна алгебрична множина називається незвідною, якщо вона не може бути представлена у вигляді суми двох алгебричних підмножин. Незвідні афінні алгебричні множини називаються афінними алгебричними многовидами, або просто афінними многовидами.
Для афінного многовиду можна задати природну топологію, замкнутими множинами якої є всі алгебричні множини. Дана топологія називається топологією Зариського.
Для нехай — ідеал многочленів, значення яких на множині рівні нулю.
Для будь-якої алгебричної множини координатним кільцем або структурним кільцем називається фактор-кільце многочленів по цьому ідеалу.
Нехай — n-вимірний проєктивний простір над полем . Однорідний многочлен , можна розглядати як функцію , зі значеннями в . Для будь-якого аналогічно, як у афінному випадку визначаємо:
Підмножина , множини називається проєктивною алгебричною множиною, якщо для деякої . Непорожня проєктивна алгебрична множина називається незвідною, якщо вона не може бути представлена у вигляді суми двох алгебричних підмножин. Незвідні проєктивні алгебричні множини називаються проєктивними алгебричними многовидами, або просто проєктивними многовидами.
Як і у афінному випадку , можна природним чином задати топологію Зариського.
Для Нехай — ідеал, породжений усіма однорідними многочленами, значення яких на множині рівне нулю. Для будь-якої проєктивної алгебричної множини фактор-кільце по цьому ідеалу називається координатним кільцем.
- Афінна алгебрична множина є алгебричним многовидом тоді і тільки тоді коли є простим ідеалом.
- Довільна непорожня афінна алгебрична множина може бути явно представлена у вигляді суми алгебричних многовидів.
Ю.Дрозд. Алгебрична геометрія і її застосування.Курс лекцій [Архівовано 22 травня 2011 у Wayback Machine.]
- Атья М., Макдональд И. Введение в коммутативную алгебру. — Москва : Мир, 1972. — 160 с.(рос.)
- Хартсхорн Р. Алгебраическая геометрия. — М.: Мир, 1981.
- David Cox; John Little, Don O'Shea (1997). Ideals, Varieties, and Algorithms, second edition, Springer-Verlag. ISBN 0-387-94680-2.
- David Eisenbud (1999). Commutative Algebra with a View Toward Algebraic Geometry. Springer-Verlag. ISBN 0-387-94269-6.
- David Dummit; Richard Foote (2003). Abstract Algebra, third edition, Wiley. ISBN 0-471-43334-9.