Алгебричний многовид

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук

В алгебричній геометрії алгебричний многовидмножина точок, координати яких задовольняють деякій системі поліноміальних рівнянь.

Визначення[ред.ред. код]

Розглядаються чотири види алгебричних многовидів: афінні многовиди, квазі-афінні многовиди , проектні многовиди і квазі-проективні многовиди.

Афінні многовиди[ред.ред. код]

Нехай є алгебрично замкнуте поле і n-мірний афінний простір над . Многочлени можна розглядати як функції з , зі значеннями в . Для кожного можна визначити підмножину , в якій значення всіх поліномів з множини рівне нулю:

Підмножина , множини називається афінною алгебричною множиною, якщо для деякої . Непорожня афінна алгебрична множина називається незвідною, якщо вона не може бути представлена у вигляді суми двох алгебричних підмножин. Незвідні афінні алгебричні множини називаються афінними алгебричними многовидами, або просто афінними многовидами.

Для афінного многовиду можна задати природну топологію, замкнутими множинами якої є всі алгебричні множини. Дана топологія називається топологією Зариського.

Для нехай ідеал многочленів, значення яких на множині рівні нулю.

Для будь-якої алгебричної множини координатним кільцем або структурним кільцем називається фактор-кільце многочленів по цьому ідеалу.

Проективні многовиди[ред.ред. код]

Нехай — n-мірний проективний простір над полем . Однорідний многочлен , можна розглядати як функцію , зі значеннями в . Для будь-якого аналогічно, як у афінному випадку визначаємо:

Підмножина , множини називається проективною алгебричною множиною, якщо для деякої . Непорожня проективна алгебрична множина називається незвідною, якщо вона не може бути представлена у вигляді суми двох алгебричних підмножин. Незвідні проективні алгебричні множини називаються проективними алгебричними многовидами, або просто проективними многовидами.

Як і у афінному випадку , можна природним чином задати топологію Зариського.

Для Нехай — ідеал, породжений усіма однорідними многочленами, значення яких на множині рівне нулю. Для будь-якої проективної алгебричної множини фактор-кільце по цьому ідеалу називається координатним кільцем.

Основні властивості[ред.ред. код]

  • Афінна алгебрична множина є алгебричним многовидом тоді і тільки тоді коли є простим ідеалом.
  • Довільна непорожня афінна алгебрична множина може бути явно представлена у вигляді суми алгебричних многовидів.

Див. також[ред.ред. код]

Посилання[ред.ред. код]

Ю.Дрозд. Алгебрична геометрія і її застосування.Курс лекцій

Література[ред.ред. код]