Ермітів простір

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку

Ермі́тів про́стір (на честь Шарля Ерміта) — векторний простір над полем комплексних чисел , на якому означена операція ермітового скалярного добутка. Поняття ермітового простору є комплексним аналогом відповідного поняття для дійсних векторних просторів, евклідового простору.

Ермітові простори зазвичай скінченновимірні. У нескінченновимірному випадку розглядаються натомість гільбертові простори. Поняття ермітового простору припускає алгебраїчне узагальнення, яке застосовується у теорії груп, дискретній математиці і теорії кодування.

Приклад[ред. | ред. код]

Векторний простор з ермітовим скалярним добутком, означеним за формулою

є -вимірним ермітовим векторним простором. Виявляється, що будь-який -вимірний ермітів векторний простір є ізоморфним до . Цей ізоморфізм досягається обранням ортонормального базису в

Узагальнення[ред. | ред. код]

В сучасній абстрактній алгебрі розглядаються векторні простори над довільними полями.

Припустимо, що на полі задана нетривіальна інволюція, тобто автоморфізм порядка 2: з інваріантним підполем Якщо уявити собі, що поле аналогічне до поля комплексних чисел, інволюція — це комплексне спряження, тоді поле аналогічне до поля дійсних чисел. Можна розглянути векторний простір над з сесквілінійною невиродженною ермітовою -значною формою

Такий простір називається псевдоермітовим векторним простором над . Якщо на додаток є звуженням комплексного спряження на і ермітова форма позитивно-визначена, тобто — додатне число для будь-якого ненульового то називається ермітовим векторним простором над . Ще більше узагальнення можна отримати, якщо замінити поле на (некомутативну) алгебру з інволюцією над і розглянути лівий -модуль замість векторного простору

Викладена вище конструкція використовується у теорії алгебраїчних груп для винаходження аналогів комплексної унітарної групи над полем А саме, слід розглянути групу ізометрій (псевдо)ермітового простору тобто множину обертованих лінійних перетвореннь які не змінюють форму, тобто виконується для будь-яких У такий спосіб будується сімейство близьких до простих алгебраїчних груп над полем Зокрема, для скінченого поля отримуємо одне з нескінчених сімейств скінчених простих груп. Цікаво відзначити, що ця нібито абстрактна конструкція має несподіванне застосування у дуже прикладній теорії кодування, в контексті алгебро-геометричних кодів. Різноманітні геометричні об'єкти пов'язані з ермітовими просторами над скінченими полями викликають неабиякий інтерес у дискретній математиці.

Див. також[ред. | ред. код]