Довжина хвилі: відмінності між версіями

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку
[неперевірена версія][неперевірена версія]
Вилучено вміст Додано вміст
Inna Z (обговорення | внесок)
Inna Z (обговорення | внесок)
Немає опису редагування
Рядок 141: Рядок 141:
}}</ref>
}}</ref>
Цей метод розглядає систему локально, так ніби вона є однорідною із деякими локальними властивостями; зокрема, локальна швидкість хвилі пов'язана із частотою є єдиною необхідною інформацією для оцінки відповідного хвильового числа або довжини хвилі. Крим того, метод обчислює повільну зміну амплітуди аби узгодити інші обмеження рівнянь фізичної системи, такі як для визначення [[Закон збереження енергії|збереження енергії]] у хвилі.
Цей метод розглядає систему локально, так ніби вона є однорідною із деякими локальними властивостями; зокрема, локальна швидкість хвилі пов'язана із частотою є єдиною необхідною інформацією для оцінки відповідного хвильового числа або довжини хвилі. Крим того, метод обчислює повільну зміну амплітуди аби узгодити інші обмеження рівнянь фізичної системи, такі як для визначення [[Закон збереження енергії|збереження енергії]] у хвилі.


====Кристали====
[[File:Wavelength indeterminacy.JPG|thumb|Хвилю у рядку атомів, можна інтерпретувати як множину різних довжин хвиль.]]

Хвилі в кристалічних твердих тілах не є неперервними, оскільки вони утворені вібрацією дискретних частинок, що організовані у регулярні решітки. Це створює [[аліасинг]], оскільки одна і та однакову вібрацію, можна розглядати як таку, що має різні довжини хвиль, як показано на малюнку.<ref name=Putnis>See Figure 4.20 in {{cite book |author= A. Putnis |title=Introduction to mineral sciences |url=https://books.google.com/books?id=yMGzmOqYescC&pg=PA97 |page=97 |isbn=0-521-42947-1 |year=1992 |publisher=Cambridge University Press}} and Figure 2.3 in {{cite book |title=Introduction to lattice dynamics |author=Martin T. Dove |url=https://books.google.com/books?id=vM50l2Vf7HgC&pg=PA22 |page=22 |isbn=0-521-39293-4 |edition=4th |year=1993 |publisher=Cambridge University Press}}</ref> Описувати це використовуючи більше ніж одну із цих частот було б надмірним; як правило обирають найдовшу довжину хвилі що відповідає цьому явищу. Діапазон довжин хвиль, якого достатньо аби надати опис усіх можливих хвиль в кристалічному середовищі відповідає векторам хвилі, що прив'язані до [[Зона Бріллюена|зони Бріллюена]].<ref name=Razeghi>{{cite book |title=Fundamentals of solid state engineering
|author=Manijeh Razeghi |pages=165 ''ff'' |url=https://books.google.com/books?id=6x07E9PSzr8C&pg=PA165 |isbn=0-387-28152-5 |year=2006 |publisher=Birkhäuser |edition=2nd}}</ref>

Ця невизначеність довжини хвилі в твердих тілах є важливою для аналізу хвильових явищ, таких як [[Зонна теорія|енергетичні смуги]] та [[Фонон|коливання решітки]]. Математично це еквівалентне [[аліасинг]]у сигналу, який [[Дискретизація|представлено]] у дискретних інтервалах.


== Примітки ==
== Примітки ==

Версія за 19:52, 9 лютого 2019

Довжина́ хви́лі — характеристика періодичної хвилі, що позначає найменшу відстань між точками простору, в яких хвиля має однакову фазу[1]. Крива на представленому малюнку може розглядатися, наприклад, як миттєвий знімок збурень в струні, коли відхилення точок струни від стану рівноваги задається виразом

.

Тут , де  — фазова швидкість хвилі, а  — кругова частота.

Довжина хвилі зазвичай позначається грецькою літерою λ. Ця характеристика хвилі однозначно зв'язана з величиною хвильового числа k

.

Порівняння двох виразів для хвильового числа вказує на залежність довжини хвилі від частоти. Для згаданого випадку хвиль в струні фазова швидкість є постійною величиною. Тому в струні хвилі різних частот (довжин хвиль) поширюються з однаковою швидкістю. В багатьох випадках при вивченні хвиль їхня фазова швидкість виявляється залежною від частоти. Це явище називають дисперсією. Співвідношення, що задає зв'язок між фазовою швидкістю і частотою називається законом дисперсії, або дисперсійним рівнянням.

Часто залежність між частотою і довжиною хвилі обернено-пропорційна. У таких випадках швидкість розповсюдження хвилі фіксована й не залежить від частоти. Наприклад, для електромагнітної хвилі у вакуумі

де c — швидкість світла.

Аналогічно, для звукових хвиль

де s — швидкість звуку.

При переході хвилі з одного середовища в інше довжина хвилі змінюється, на відміну від частоти, яка залишається сталою. Електромагнітні хвилі в середовищі зазвичай характеризуються приведеною довжиною хвилі, тобто довжиною, яку хвиля мала б у вакуумі.

Синусоїдні хвилі

В лінійному[en] середовищі, будь-яку форму хвилі хвилі можна описати в термінах незалежного поширення синусоїдних компонентів. Довжина хвилі λ синусоїдної хвилі, що рухається із постійною швидкістю v задається як[2]

де v це величина фазової швидкості) хвилі, а f це її частота. В дисперсивному середовищі, фазова швидкість залежить від частоти хвилі, що робить зв'язок між довжиною хвилі і частотою нелінійним.

У випадку із Електромагнітним випромінюванням—таким як світло—у вільному просторі, фазова швидкість дорівнює швидкості світла, що є близькою 3×108 м/сек. Таким чином довжина хвилі 100 МГц електромагнітної (радіо) хвилі становить близько: 3×108 м/сек розділене на 108 Гц = 3 метри. Довжина хвиль видимого світла варіюється від темно червоного, що має довжину хвилі приблизно в 700 нм, до фіолетового, приблизно 400 нм (інші приклади див. електромагнітний спектр).

Для звукових хвиль в повітрі, Швидкість звуку становить 343 м/сек (в при нормальних умовах температури і атмосферного тиску). Людський слух може сприймати довжини хвиль звукових частот (20 Гц–20 кГц) будуть знаходитися в межах приблизно від 17 м до 17 мм, відповідно. Зверніть увагу, що довжини хвиль чутного звуку набагато довші за довжини хвиль видимого світла.

Стояча хвиля

Синусоїдні стоячі хвилі в коробці, що обмежує крайні точки хвилі, які в результаті стають вузлами, що є цілими частинами половини довжини хвиль, які співпадають із коробкою.
Стояча хвиля (чорним кольором) показана як сума двох хвиль, що поширюються у протилежних напрямках (червоним і синім кольорами)

Стояча хвиля це хвилеподібний рух, який залишається на одному місці. Синусоїдальна стояча хвиля має стаціонарні точки, де рух не відбувається, які називаються вузлами[en], а довжина хвилі в два рази більша за відстань між вузлами.

На верхньому малюнку показано три стоячі хвилі у коробці. Стінки коробки зроблені так, що хвиля повинна мати вузли на стінках цієї коробки (приклад крайових умов), це визначає які довжини хвиль потрібні. Наприклад, для електромагнітної хвилі, якщо коробка має ідеальні металеві стінки, умови для появи вузлів на стінках виникають тому що металеві стінки не можуть підтримувати тангенціальне електричне поле, що приводить до того, що хвиля має нульову амплітуду на стінках.

Стаціонарну хвилю можна розглядати як суму двох синусоїдних хвиль, що поширюються із протилежно направленими швидкостями.[3] Таким чином, довжина хвилі, період і швидкість хвилі пов'язані так само як і для біжучої хвилі. Наприклад, швидкість світла можна визначити за допомогою спостереження за стоячими хвилями в металевій коробці в якій знаходиться ідеальний вакуум.

Математичне представлення

Рухомі синусоїдні хвилі часто задають математично через їх швидкість v (в напрямі осі x), частоту f і довжину хвилі λ наступним чином:

де y це значення хвилі в будь-якій точці позиції x, при часі t, і A задає амплітуду хвилі. Також, їх часто задають в термінах хвильового числа k (кількість довжин хвилі, що поміщаються в 2π одиниць довжини) і кутової частоти ω (2π помножене на частоту) як:

де довжина хвилі і хвильове число пов'язані до швидкості і частоти наступним чином:

або

У другому виразі рівняння, що наведене вище, фаза (kxωt) часто узагальнена до виразу (krωt), що замінює хвильове число k на хвильовий вектор, який задає напрям та хвильове число для плоскої хвилі у тривимірному просторі, параметризоване за допомогою вектора позиції r. В такому випадку, хвильове число k, магнітуда k, досі залишаються у тому самому співвідношенні із довжиною хвилі як було показаному вище, де v інтерпретують як скалярну швидкість, напрям якої задає хвильовий вектор. Перша форма в якій використовується відповідна довжина хвилі в фазі, не так легко узагальнюється до задавання хвилі в довільному напрямку.

Також використовують узагальнення до синусоїд із іншими фазами, а також до комплексних експонент; див плоска хвиля. Загальноприйняте використання косинусної фази замість синусної фази при описанні хвилі основане на тому, що косинус є дійсною частиною комплексної експоненти для хвилі

Загальне середовище

Довжина хвилі зменшується у середовищі із більш повільним поширенням хвиль.
Рефракція: при входженні в середовище, де швидкість хвилі менша, хвиля змінює напрям руху.
Розділення кольорів світла призмою (натисніть для анімації)

Швидкість хвилі залежить від середовища в якій вона поширюється. Зокрема, швидкість світла в середовищі є меншою ніж у вакуумі, це означає, що та сама частота буде відповідати меншій довжині хвилі у середовищі, ніж у вакуумі, як показано на малюнку праворуч.

Ця зміна швидкості при входженні в середовище призводить до заломлення, тобто до зміни напрямку руху хвиль, які зустрічають перехід між середовищами під кутом.[4] Для електромагнітних хвиль, ця зміна кута поширення описується законом Снеліуса.

Не тільки швидкість хвилі в одному середовищі, може відрізнятися від швидкості в іншому середовищі, а швидкість як правило змінюється із довжиною хвилі. В результаті, зміна напряму при вході в інше середовище відбувається із зміною довжини хвилі.

Для електромагнітних хвиль швидкість поширення у середовищі визначається його показником заломлення відповідно до

де c це швидкість світла у вакуумі, а n0) це показник заломлення середовища для довжини хвилі λ0, де остання вимірюється у вакуумі, а не в середовищі. Відповідна довжина хвилі у середовищі становить

Якщо вказують довжини хвиль електромагнітного випромінення, як правило вказують значення довжини хвилі у вакуумі, якщо явно не визначено, що це довжина хвилі у певному середовищі. В акустиці, де середовище є необхідним для існування хвиль, довжина хвилі вказується для відповідного зазначеного середовища.

Зміна швидкості світла із довжиною хвилі називається дисперсією, це явище також можна спостерігати при проходженні світла через призму[en], коли світло розділяється на складові кольори. Розділення на кольори відбувається коли показник заломлення в середині призми змінюється для різної довжини хвилі, тож хвилі із різною довжиною в середині призми поширюються із різною швидкістю, що змушує їх заломлюватися під різними кутами. Математичний закон, який описує як швидкість світла в середовищі змінюється із його довжиною хвилі відомий як закон дисперсії.

Неоднорідне середовище

Різна локальна довжина хвилі (від гребня до гребня) океанських хвиль, що наближуються до берега[5]

Довжина хвилі може бути корисним поняттям, навіть якщо хвиля не періодична у просторі. Наприклад, океанські хвилі, які наближуються до берега, показані на малюнку, мають різну локальну довжину хвилі, яка частково залежить від глибини морського дна у співвідношенні до висоти хвилі. Аналіз цих хвиль може засновуватися на порівнянні локальної довжини хвилі із локальною глибиною води.[5]

Синусоїдна хвиля яка рухається у неоднорідному просторі, з втратами

Хвилі, синусоїдні у часі але які поширюються через середовище, властивості якого змінюються із положенням у ньому (неоднорідне середовище) можуть поширюватися із швидкістю, яка також буде змінюватися із положенням, і таким чином не будуть синусоїдними у просторі. Приклад показано на малюнку праворуч. З тим як хвиля сповільнюється, довжина хвилі стає меншою, а амплітуда зростає; після проходження місця максимального відгуку, короткі хвилі викликають високі втрати і зрештою хвиля згасає.

Аналіз диференційних рівнянь, що описують такі системи часто проводять наближеними методами, такими як метод наближення ВКБ (що також відомий як метод Ліувілля–Гріна). Метод інтегрує фазу у просторі рішення, що є функцією часу і простору, використовуючи локальне хвильове число, яке можна розуміти як відповідник "локальної довжини хвилі".[6][7] Цей метод розглядає систему локально, так ніби вона є однорідною із деякими локальними властивостями; зокрема, локальна швидкість хвилі пов'язана із частотою є єдиною необхідною інформацією для оцінки відповідного хвильового числа або довжини хвилі. Крим того, метод обчислює повільну зміну амплітуди аби узгодити інші обмеження рівнянь фізичної системи, такі як для визначення збереження енергії у хвилі.


Кристали

Хвилю у рядку атомів, можна інтерпретувати як множину різних довжин хвиль.

Хвилі в кристалічних твердих тілах не є неперервними, оскільки вони утворені вібрацією дискретних частинок, що організовані у регулярні решітки. Це створює аліасинг, оскільки одна і та однакову вібрацію, можна розглядати як таку, що має різні довжини хвиль, як показано на малюнку.[8] Описувати це використовуючи більше ніж одну із цих частот було б надмірним; як правило обирають найдовшу довжину хвилі що відповідає цьому явищу. Діапазон довжин хвиль, якого достатньо аби надати опис усіх можливих хвиль в кристалічному середовищі відповідає векторам хвилі, що прив'язані до зони Бріллюена.[9]

Ця невизначеність довжини хвилі в твердих тілах є важливою для аналізу хвильових явищ, таких як енергетичні смуги та коливання решітки. Математично це еквівалентне аліасингу сигналу, який представлено у дискретних інтервалах.

Примітки

  1. ДСТУ 2755-94 Фізична оптика. Терміни, визначення та літерні позначення основних величин.
  2. David C. Cassidy; Gerald James Holton; Floyd James Rutherford (2002). Understanding physics. Birkhäuser. с. 339 ff. ISBN 0-387-98756-8.
  3. John Avison (1999). The World of Physics. Nelson Thornes. с. 460. ISBN 978-0-17-438733-6.
  4. Raymond T. Pierrehumbert (2010). Principles of Planetary Climate. Cambridge University Press. с. 327. ISBN 0-521-86556-5.
  5. а б Paul R Pinet (2009). op. cit. с. 242. ISBN 0-7637-5993-7.
  6. Bishwanath Chakraborty (2007). Principles of Plasma Mechanics. New Age International. с. 454. ISBN 978-81-224-1446-2.
  7. Jeffrey A. Hogan & Joseph D. Lakey (2005). Time-frequency and time-scale methods: adaptive decompositions, uncertainty principles, and sampling. Birkhäuser. с. 348. ISBN 978-0-8176-4276-1.
  8. See Figure 4.20 in A. Putnis (1992). Introduction to mineral sciences. Cambridge University Press. с. 97. ISBN 0-521-42947-1. and Figure 2.3 in Martin T. Dove (1993). Introduction to lattice dynamics (вид. 4th). Cambridge University Press. с. 22. ISBN 0-521-39293-4.
  9. Manijeh Razeghi (2006). Fundamentals of solid state engineering (вид. 2nd). Birkhäuser. с. 165 ff. ISBN 0-387-28152-5.

Джерела

  • Грінченко В. Т., Вовк І. В., Маципура В. Т. Основи акустики. — К.: Наукова думка, 2007. — 640 с. — ISBN 978-966-00-0622-5.
  • Біленко І. І. Фізичний словник. — К. : Вища школа, 1979. — 336 с.