Ультрафіолетове випромінювання

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Знімок Сонця в УФ-діапазоні, STEREO
Дугові розряди продукують ультрафіолетове світло, тому зварювальники мусять одягати зварювальну маску, аби запобігти пошкодженню очей.

Ультрафіолетове випромінювання (від лат. ultra — «за межами»), скорочено УФ-випромінювання або ультрафіолет — невидиме оком людини електромагнітне випромінювання, що займає спектральну область між видимим і рентгенівським випромінюваннями в межах довжин хвиль 400-10 нм.

Класифікація[ред.ред. код]

Уся область ультрафіолетового випромінювання умовно ділиться на:

Або на:

  • ближню від 400 до 200 нм. Відкрито в 1801 році німецьким вченим Йоганном Ріттером і англійським вченим Вільямом Волластоном за фотохімічним впливом випромінювання на хлористе срібло (AgCl).
  • далеку, або вакуумну (200-10 нм). Назва зумовлена тим, що випромінювання цієї ділянки сильно поглинається повітрям і його дослідження проводять за допомогою вакуумних спектральних приладів. Знайдено німецьким вченим В. Шуманом за допомогою побудованого ним вакуумного спектрографа з флюоритовою призмою (18851903) та безжелатинових фотопластин. За допомогою чого він отримав можливість реєструвати короткохвильове випромінювання з довжиною хвиль до 130 нм. Англійський вчений Т. Лайман, вперше збудувавши вакуумний спектрограф з увігнутою дифракційною граткою, реєстрував ультрафіолетове випромінювання з довжиною хвилі до 25 нм (1924 рік). До 1927 року був вивчений весь проміжок хвиль до рентгенівського випромінювання.
Оптичний спектр сонячного випромінення. Зверху — звичайний вигляд у спектроскоп; знизу — представлення залежності інтенсивності випромінення — I від довжини хвилі

За міжнародною класифікацією стандарта ISO-DIS-21348[1] сонячне УФ-випромінення розподіляється на такі області та підобласті:

Назва області Скорочення Довжина хвилі
нанометри
Енергія на фотон
електронвольти
Ближня область NUV 400—300 нм 3,10—4,13 еВ
Ультрафіолет A
довгі ультрафіолетові хвилі або чорне світло
UVA 400—315 нм 3,10—3,94 еВ
Середня область MUV 300—200 нм 4,13—6,20 еВ
Ультрафіолет B
середні ультрафіолетові хвилі
UVB 315—280 нм 3,94—4,43 еВ
Ультрафіолет C
короткі ультрафіолетові хвилі
UVC 280—100 нм 4,43—12,4 еВ
Вакуумна область VUV 200—10 нм 6,20—124 еВ
Далека область FUV 200—122 нм 6,20—10,2 еВ
Лайман-альфа водню H Lyman-α 121,57—121,58 нм  — еВ
Екстремально далека EUV 121—10 нм 10,2—124 еВ

Спектр ультрафіолетового випромінювання може бути лінійчатим, безперервним або складатися із смуг залежно від природи джерела випромінювання . Лінійчатим спектром володіє УФ-випромінювання атомів, іонів або легких молекул (наприклад, молекула водню H2). Для спектрів важких молекул характерні смуги, обумовлені електронно-коливально-обертальними переходами молекул. Безперервний спектр виникає при гальмуванні і рекомбінації електронів.

Оптичні властивості[ред.ред. код]

Флуоресценція мінералів на різних довжинах хвиль при УФ-опроміненні

Оптичні властивості речовин в ультрафіолетовій області спектру значно відрізняються від їх оптичних властивостей у видимій області. Характерною межею є зменшення прозорості (збільшення коефіцієнта поглинання) більшості тіл, прозорих у видимій області. Наприклад, звичайне скло непрозоре при інтенсивності випромінювання — I < 320 нм; в більш короткохвильовій області прозорі лише увіолеве скло, сапфір, фтористий магній, кварц, флюорит, фтористий літій і деякі інші матеріали. Найдальшу межу прозорості (105 нм) має фтористий літій. Для I < 105 нм прозорих матеріалів практично немає. З газоподібних речовин найбільшу прозорість мають інертні гази, межа прозорості яких визначається величиною їхнього іонізаційного потенціалу. Найкороткохвильовішу межу прозорості має гелій (He) — 50,4 нм. Повітря непрозоре практично при I < 185 нм через УФ-поглинання киснем.

Залежність коефіцієнта відбиття від довжини хвилі випромінення

Коефіцієнт відбиття всіх матеріалів (у тому числі металів) зменшується із зменшенням довжини хвилі випромінювання. Наприклад, коефіцієнт відбиття свіжонапиленого алюмінію (Al), одного з найкращих ніж інші матеріалів для дзеркальних покриттів, у видимій області спектру, різко зменшується при I < 90 нм. Віддзеркалення алюмінію значно зменшується також унаслідок окислення поверхні. Для захисту поверхні алюмінію від окислення застосовуються покриття з фтористого літію або фтористого магнію. В області I < 80 нм деякі матеріали мають коефіцієнт відбиття 10-30% (золото (Au), платина (Pt), радій (Ra), вольфрам (W) та ін.), проте при I < 40 нм їхній коефіцієнт віддзеркалення знижується до 1% і менше.

Джерела ультрафіолетового випромінювання[ред.ред. код]

Випромінювання розжарених до 3000 K твердих тіл містить помітну частку ультрафіолетового випромінювання неперервного спектру, інтенсивність якого зростає із збільшенням температури. Сильніше ультрафіолетове випромінювання випускає плазма газового розряду. При цьому залежно від розрядних умов і робочої речовини може випускатись як безперервний, так і лінійчатий спектр. Для різних застосувань промисловість випускає ртутні, водневі, ксенонові та ін. газорозрядні лампи, вікна в яких (або цілком колби) виготовляють з прозорих для УФ-випромінювання матеріалів (частіше з кварцу). Будь-яка високотемпературна плазма (плазма електричних іскор і дуг, плазма, що утворюється при фокусуванні сильного лазерного випромінювання в газах або на поверхні твердих тіл, і т. д.) є потужним джерелом УФ-випромінювання. Інтенсивне УФ-випромінювання неперервного спектру випромінюють електрони, прискорені в синхротроні. Для ультрафіолетової області спектру розроблені також оптичні квантові генератори — лазери. Найменшу довжину хвилі з них має водневий лазер (109,8 нм).

Природні джерела ультрафіолетового випромінювання — Сонце, зірки, туманності й ін. космічні об'єкти. Проте лише довгохвильова частина цього випромінювання (I > 290 нм) досягає земної поверхні. Більш короткохвильове випромінювання поглинається озоном, киснем та іншими компонентами атмосфери на висоті 30—200 км від поверхні Землі, що відіграє велику роль в атмосферних процесах. Ультрафіолетове випромінювання зірок та ін. космічних тіл, окрім поглинання в земній атмосфері, в інтервалі 91,2—20 нм практично повністю поглинається міжзоряним воднем.

Детектори ультрафіолетового випромінювання[ред.ред. код]

Для реєстрації УФ-випромінювання при I > 230 нм використовуються звичайні фотоматеріали. В більш короткохвильовій області до нього чутливі спеціальні маложелатинові фотопрошарки. Застосовуються фотоелектричні приймачі, що використовують здатність випромінювання викликати іонізацію і фотоефект: фотодіоди, іонізаційні камери, лічильники фотонів, фотопомножувачі і ін. Розроблений також особливий вид фотопомножувачів — канальні електронні помножувачі, що дозволяють створювати мікроканальні пластини. В таких пластинах кожний осередок є канальним електронним помножувачем розміром до 10 мкм. Мікроканальні пластини дозволяють одержувати фотоелектричні зображення в УФ-випромінюванні й об'єднують переваги фотографічних і фотоелектричних методів реєстрації. При дослідженнях також використовують різні люмінесцентні речовини, що перетворюють УФ-випромінювання у видиме світло. На цій основі створені прилади для візуалізації зображень в УФ-випромінюванні.

Застосування[ред.ред. код]

Вивчення спектрів випромінювання, поглинання і відбиття в УФ-області дозволяє визначати електронну структуру атомів, іонів, молекул, а також твердих тіл. УФ-спектри Сонця, зірок та ін. несуть інформацію про фізичні процеси, що відбуваються в гарячих областях цих космічних об'єктів. На фотоефекті, що викликається УФ-випромінюванням, заснована фотоелектронна спектроскопія. УФ-випромінювання може порушувати хімічні зв'язки в молекулах, внаслідок чого можуть відбуватися різні хімічні реакції (окислення, відновлення, розклад, полімеризація). Люмінесценція під дією УФ-випромінювання використовується при створенні люмінесцентних ламп, фарб, що світяться, в люмінесцентному аналізі і люмінесцентній дефектоскопії. Ультрафіолетове випромінювання застосовується в криміналістиці для встановлення ідентичності фарбників, автентичності документів тощо. В мистецтвознавстві дозволяє знайти на картинах не видимі оком сліди реставрацій . Здатність багатьох речовин до вибіркового поглинання ультрафіолетового випромінювання використовується для виявлення в атмосфері шкідливих домішок, а також в ультрафіолетовій мікроскопії.

Біологічна дія[ред.ред. код]

При дії на живі організми УФ-випромінювання поглинається вже верхніми шарами тканин рослин або шкіри людини і тварин. В основі біологічна дія випромінювання обумовлена хімічними змінами молекул біополімерів. Ці зміни викликаються як безпосереднім поглинанням квантів випромінювання, так і (в меншій мірі) радикалами води (HO-; H3O+; H2O2−2) та інших низькомолекулярних з'єднань, що утворюються при опромінюванні.

На людину і тварин малі дози УФ-випромінювання впливають благотворно — сприяють утворенню вітамінів групи D, покращують імунобіологічні властивості організму. Характерною реакцією шкіри на УФ-випромінювання є специфічне почервоніння — еритема (максимальну еритемну дію має випромінювання з довжиною хвилі 296,7 нм та = 253,7 нм), яка звичайно переходить в захисну пігментацію — «засмагу». Великі дози УФ-випромінювання можуть викликати пошкодження очей (фотоофтальмію) і опік шкіри. Часті і надмірні дози в деяких випадках можуть зумовлювати канцерогенну дію на шкіру.

У рослинах УФ-випромінювання змінює активність ферментів і гормонів, впливає на синтез пігментів, інтенсивність фотосинтезу і фотоперіодичної реакції. Не встановлено, чи корисні і чи тим більше необхідні для проростання насіння, розвитку паростків і нормальної життєдіяльності вищих рослин малі дози УФ-випромінювання. Великі ж дози, поза сумнівом, несприятливі для рослин, про що свідчать існуючі у них захисні пристосування (наприклад, накопичення певних пігментів, клітинні механізми відновлення від пошкоджень).

На мікроорганізми і культивовані клітини вищих тварин і рослин УФ-випромінювання діє згубно і викликає мутагенез (найефективнішне при довжині хвилі в межах 280–240 нм). Звичайно спектр летальної і мутагенної дії приблизно збігається із спектром поглинання нуклеїнових кислот — ДНК і РНК, в деяких випадках спектр біологічної дії близький до спектру поглинання білків. Основна роль дії УФ-випромінювання на клітини належить хімічним змінам у ДНК: піримідинові сполуки (головним чином тимін) при поглинанні квантів УФ-випромінювання утворюють димери, які перешкоджають нормальному подвоєнню (реплікації) ДНК при підготовці клітини до ділення. Це може приводити до загибелі клітин або зміни їхніх спадкових властивостей (мутацій). Певне значення в летальній дії випромінювання на клітини мають також пошкодження біолеских[Джерело?] мембран і порушення синтезу різних їх компонентів і клітинної оболонки. Більшість живих клітин мають здатність до відновлення завдяки наявності в них систем репарації. Здатність відновлюватися від пошкоджень, що викликані УФ-випромінюванням, виникла, ймовірно, на ранніх етапах еволюції і відігравала важливу роль у виживанні первинних організмів, що піддавалися інтенсивному сонячному ультрафіолетовому опромінюванню.

Залежність життєздатності бактерій від дози УФ-випромінювання: А — кишкова паличка Escherichia coli (λ=253,7 нм); 1, 2 — мутантні штами; 3 — дикий тип; Б — Micrococcus radiodurans (λ=265,2 нм)

За чутливостю до УФ-випромінювання біологічні об'єкти розрізняються дуже сильно. Наприклад, доза УФ-випромінювання, що призводить до загибелі 90% клітин, для різних штамів кишкової палички дорівнює 10, 100 і 800 ерг/мм², а для бактерій Micrococcus radiodurans — 7 000 ерг/мм². Чутливість клітин до УФ-випромінювання у великій мірі залежить також від їхнього фізіологічного стану і умов культивування до і після опромінювання (температура, склад живильного середовища й таке інше). Сильно впливають на чутливість клітин мутації деяких генів. У бактерій і дріжджів відомо близько 20 генів, мутації яких підвищують чутливість до УФ-випромінювання. У ряді випадків такі гени відповідальні за відновлення кліток від променевих пошкоджень. Мутації інших генів порушують синтез білка і будову клітинних мембран, тим самим підвищуючи радіочутливість негенетичних компонентів клітки. Мутації, що підвищують чутливість до УФ-випромінювання, відомі й у вищих організмів, у тому числі у людини. Так, спадкове захворювання — пігментна ксеродерма обумовлена мутаціями генів, що контролюють темнову репарацію.

Генетичні наслідки опромінювання ультрафіолетом пилку вищих рослин, клітин рослин і тварин, а також мікроорганізмів виражені в підвищенні частот мутації генів, хромосом і плазмид. Частота мутації окремих генів, при дії високих доз УФ-випромінювання, може підвищуватися в тисячі раз в порівнянні з природним рівнем і сягати декількох відсотків. На відміну від генетичної дії іонізуючих випромінювань, мутації генів під впливом УФ-випромінювання виникають відносно частіше, ніж мутації хромосом. Завдяки сильному мутагенному ефекту це випромінювання широко використовують як в генетичних дослідженнях, так і в селекції рослин і промислових мікроорганізмів, що є продуцентами антибіотиків, амінокислот, вітамінів і білкової біомаси. Генетична дія УФ-випромінювання могла відігравати істотну роль в еволюції живих організмів.

Вплив на здоров'я людини[ред.ред. код]

Біологічні ефекти ультрафіолетового випромінювання в трьох спектральних ділянках істотно різні, тому біологи іноді виділяють, як найважливіші в їх роботі, такі діапазони:

  • Близький ультрафіолет, УФ-A промені (UVA, 315–400 нм)
  • УФ-B промені (UVB, 280–315 нм)
  • Далекий ультрафіолет, УФ-C промені (UVC, 100–280 нм)

Практично весь UVC і приблизно 90% UVB поглинаються озоном, а також водяною парою, киснем і вуглекислим газом при проходженні сонячного світла через земну атмосферу. Випромінювання з діапазону UVA досить слабо поглинається атмосферою. Тому радіація, що досягає поверхні Землі, в значній мірі містить ближній ультрафіолет UVA, і, в невеликій частці — UVB.

Позитивні ефекти[ред.ред. код]

У ХХ столітті було вперше показано як УФ-випромінювання має благотворний вплив на людину. Фізіологічна дія УФ-променів було досліджено в середині минулого століття (Г. Варшавер, Г. Франк. М. Данциг, Н. Галанін, М. Каплун, А. Парфенов, Є. Бєлікова, В. Dugger. J. Hassesser. Н. Ronge, Є. Biekford тощо). Було переконливо доведено в сотнях експериментів, що випромінювання в УФ області спектру (290–400 нм) підвищує тонус симпатико-адреналінової системи, активує захисні механізми, підвищує рівень неспецифічного імунітету, а також збільшує секрецію ряду гормонів. Під впливом УФ випромінювання (УФІ) утворюються гістамін і подібні йому речовини, які мають судинорозширювальну дію, підвищують проникність шкірних судин. Змінюється вуглеводний і білковий обмін речовин в організмі.

Дія оптичного випромінювання змінює легеневу вентиляцію — частоту і ритм дихання, підвищується газообмін, споживання кисню, активізується діяльність ендокринної системи. Особливо значна роль УФ випромінювання в утворенні в організмі вітаміну Д, що зміцнює кістково-м'язову систему і має антирахітну дію. Особливо слід відзначити, що тривала недостатність УФ випромінювання може мати несприятливі наслідки для людського організму, які отримали назву «світлового голодування». Найчастішим проявом цього захворювання є порушення мінерального обміну речовин, зниження імунітету, швидка стомлюваність тощо.

Трохи пізніше в роботах (О. Г. Газенко, Ю. Є. Нефьодов, Є. О. Шепелєв, С. М. Залогуев, Н. Є. Панфьорова, І. В. Анісімова) зазначену специфічну дію випромінювання було підтверджено в космічній медицині. Профілактичне УФ опромінення було введено в практику космічних польотів поряд з методичними вказівками 1989 року «Профілактичне ультрафіолетове опромінення людей (із застосуванням штучних джерел УФ випромінювання)». Обидва документи є надійною базою подальшого вдосконалення УФ профілактики.

Дія на шкіру[ред.ред. код]

Дія ультрафіолетового опромінення на шкіру, що перевищує природну захисну здатність шкіри (засмага) призводить до опіків. Тривала дія ультрафіолету сприяє розвитку меланоми, різних видів раку шкіри, прискорює старіння і поява зморшок. При контрольованому дії на шкіру ультрафіолетових променів, одним з основних позитивних факторів вважається утворення на шкірі вітаміну D , за умови, що на ній зберігається природна жирова плівка. Жир шкірного сала, що знаходиться на поверхні шкіри, піддається дії ультрафіолету і потім знову вбирається в шкіру. Але якщо змити шкірний жир перед тим, як вийти на сонячне світло, вітамін D не зможе утворитися. Якщо прийняти ванну відразу ж після перебування на сонці і змити жир, то вітамін D може не встигнути вбратися в шкіру.

Дія на сітківку ока[ред.ред. код]

Ультрафіолетове випромінювання невідчутно для очей людини, але при інтенсивному опроміненні викликає типово радіаційне ураження (опік сітківки).

Все ж, ультрафіолет надзвичайно потрібен для очей людини, про що свідчать більшість офтальмологів. Сонячне світло розслаблює на приочні м'язи, стимулює райдужну оболонку і нерви очей, збільшує циркуляцію крові. Регулярно зміцнюючи за допомогою сонячних ванн нерви сітківки, можна позбутися від болісних відчуттів в очах, що виникають при інтенсивному сонячному світлі.

Захист очей[ред.ред. код]

Для захисту очей від шкідливого впливу ультрафіолетового випромінювання використовуються спеціальні захисні окуляри, що затримують до 100% ультрафіолетового випромінювання і прозорі у видимому спектрі. Як правило, лінзи таких окулярів виготовляються із спеціальних пластмас або полікарбонату. Багато видів контактних лінз також забезпечують 100% захист від УФ-променів (зазвичай це вказано на маркуванні упаковки).

Див. також[ред.ред. код]

Примітки[ред.ред. код]

Література[ред.ред. код]

  1. Мейер А., Зейтц Э. Ультрафиолетовое излучение, пер. с нем., М., 1952. (рос.)
  2. Лазарев Д. Н. Ультрафиолетовая радиация и ее применение, Л. — М., 1950. (рос.)
  3. Зайдель А. Н. Шрейдер Е. Я., Спектроскопия вакуумного ультрафиолета, М., 1967. (рос.)
  4. Столяров К. П. Химический анализ в ультрафиолетовых лучах, М. — Л., 1965. (рос.)
  5. Бейкер А., Беттеридж Д. Фотоэлектронная спектроскопия. М., 1975. (рос.)
  6. Samson I. A. R. Techniques of vacuum ultraviolet spectroscopy, N. Y. — L. — Sydney, 1967. (англ.)
  7. Самойлова К. А. Действие ультрафиолетовой радиации на клетку, Л., 1967. (рос.)
  8. Дубров А. П. Генетические и физиологические эффекты действия ультрафиолетовой радиации на высшие растения, М., 1968. (рос.)
  9. Галанин Н. Ф. Лучистая энергия и ее гигиеническое значение, Л., 1969. (рос.)
  10. Смит К., Хэнеуолт Ф. Молекулярная фотобиология, пер. с англ., М., 1972. (рос.)
  11. Шульгин И. А. Растение и солнце, Л., 1973. (рос.)
  12. Мясник М. Н. Генетический контроль радиочувствительности бактерий, М., 1974. (рос.)
  13. Hu, S; Ma, F; Collado-Mesa, F; Kirsner, R. S. (Jul 2004), «UV radiation, latitude, and melanoma in US Hispanics and blacks», Arch. Dermatol. 140 (7): 819–824, PMID 1526269 (англ.)
  14. Hockberger, Philip E. (2002), «A History of Ultraviolet Photobiology for Humans, Animals and Microorganisms», Photochemisty and Photobiology 76 (6): 561–569. (англ.)
  15. Allen, Jeannie (2001-09-06), «Ultraviolet Radiation: How it Affects Life on Earth», Earth Observatory, NASA, USA. (англ.)

Посилання[ред.ред. код]