Стандартна модель

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук
Standard Model of Elementary Particles ua.png
Взаємодія між істинно елементарними частинками (полями) у Стандартній моделі. Важливо, що деякі поля мають самодію, тобто взаємодіють з собою.

Станда́ртна моде́ль у фізиці елементарних частинок — теоретична конструкція, що описує електромагнітну, слабку і сильну взаємодію всіх елементарних частинок. Гравітацію Стандартна модель не включає.

Стандартна модель складається з таких тверджень.

Частинками-носіями взаємодій є:

  • Маса частинок пояснюється їхньою взаємодією з полем Гіггса, квантом якого є бозон Гіггса.
  • На відміну від електромагнітної і сильної, слабка взаємодія може змішувати ферміони з різних поколінь, що призводить до нестабільності всіх частинок, за винятком найлегших, і до таких ефектів, як CP-порушення і осциляції нейтрино.

Дотепер всі прогнози Стандартної моделі підтверджувалися експериментами, іноді з фантастичною точністю в мільйонні частки відсотка. Тільки останніми роками стали з'являтися результати, в яких прогнози Стандартної моделі злегка розходяться з експериментом. Водночас, очевидно, що Стандартна модель не може бути останнім словом у фізиці елементарних частинок, бо вона містить дуже багато зовнішніх параметрів, а також не включає гравітацію. Тому пошук відхилень від Стандартної моделі — один з найактивніших напрямків дослідження останніми роками. Очікується, що експерименти на колайдері LHC зможуть зареєструвати нові відхилення від Стандартної моделі.

Основи квантової теорії поля[ред.ред. код]

Як основа Стандартної моделі виступає квантова теорія поля — розділ теоретичної фізики, що вивчає квантовані релятивістські поля. В її рамках усі матеріальні об'єкти представляються полями, кванти яких відповідають частинкам. Усі поля квантової теорії поля лоренц-коваріантні, тобто для них виконуються постулати спеціальної теорії відносності. Крім того від них вимагається спеціальна симетрія щодо локальних перетворень, яку називають калібрувальною інваріантністю, яка дозволяє об'єднати частинки, що спостерігаються в екпериментах, в окремі родини і покоління.

Кварки[ред.ред. код]

Складові адронів — кварки: баріони містять 3 кварки, мезони — кварк і антикварк. 6 ароматів кварків об'єднані в 3 сімейства (покоління), кожне з яких дедалі масивніше. Кварки up-типу (Q=2/3): u, c, t, і кварки down-типу (Q=-1/3): d, s, b. За кварковою моделлю протон складається з uud, нейтрон — з udd. В 50-х роках було відкрито Δ++, який має спін 3/2 і складається з трьох u-кварків. Це суперечить принципу Паулі: оскільки кварки ферміони, то вони не можуть перебувати в одному квантовому стані (з однаковими усіма квантовими числами). Тому було додано ще одне квантове число (ще один ступінь свободи) — колір, який може набувати значень: зелений (або жовтий), синій і червоний. Назви кольорів вибрано для зручності за аналогією до оптики. В експериментах це квантове число спостерігати не можна, оскільки всі спостережувані частинки є безколірними: баріони складаються з трьох кварків різних кольорів — отримуємо білий колір (як змішування світла), мезони складаються з двох кварків, які мають протилежні кольори (наприклад, червоний і античервоний). Розділ фізики, який вивчає кольорову взаємодію, називається квантова хромодинаміка.

Математичний апарат[ред.ред. код]

Базується на теорії груп.