Афінне перетворення: відмінності між версіями

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до навігації Перейти до пошуку
[перевірена версія][неперевірена версія]
Вилучено вміст Додано вміст
Entry1337 (обговорення | внесок)
Функція пропозицій посилань: додано 3 посилання.
Рядок 1: Рядок 1:
'''Афінне перетворення''' ({{lang-la|affinis}}, «пов'язаний з») — відображення площини або простору в собі, при якому паралельні прямі переходять у паралельні прямі, пересічні — в пересічні, мимобіжні — в мимобіжні (<math>f:\R^n\to \R^n</math>).
'''Афінне перетворення''' ({{lang-la|affinis}}, «пов'язаний з») — відображення площини або простору в собі, при якому [[Паралельність|паралельні прямі]] переходять у паралельні прямі, пересічні — в пересічні, мимобіжні — в мимобіжні (<math>f:\R^n\to \R^n</math>).


Це можна записати у вигляді
Це можна записати у вигляді
Рядок 26: Рядок 26:
Зазвичай матрично-векторний добуток завжди відображає початок координат на початок координат, і, таким чином, не може представляти перенесення, яке обов'язково переносить початок координат в іншу точку. Додаванням «1» до кожного вектора, вважаємо простір відображенним на підмножину простору з одним додатковим виміром. В цьому просторі, початковий простір займає підмножину в якій останній індекс 1. Таким чином початок координат початкового простору буде знаходитися в (0,0, … 0, 1). Перенесення всередині початкового простору в термінах лінійного перетворення простору з більшою кількістю вимірів стає можливим. Це є приклад [[однорідні координати|однорідних координат]].
Зазвичай матрично-векторний добуток завжди відображає початок координат на початок координат, і, таким чином, не може представляти перенесення, яке обов'язково переносить початок координат в іншу точку. Додаванням «1» до кожного вектора, вважаємо простір відображенним на підмножину простору з одним додатковим виміром. В цьому просторі, початковий простір займає підмножину в якій останній індекс 1. Таким чином початок координат початкового простору буде знаходитися в (0,0, … 0, 1). Перенесення всередині початкового простору в термінах лінійного перетворення простору з більшою кількістю вимірів стає можливим. Це є приклад [[однорідні координати|однорідних координат]].


Перевагою використання однорідних координат є те, що можливо комбінувати будь-яку кількість перетворень в одне шляхом перемноження матриць. Ця можливість використовується графічними програмами.
Перевагою використання однорідних координат є те, що можливо комбінувати будь-яку кількість перетворень в одне шляхом [[Множення матриць|перемноження матриць]]. Ця можливість використовується графічними програмами.


== Властивості ==
== Властивості ==
Рядок 32: Рядок 32:
[[Файл:Fractal fern explained.png|thumb|right|200px|Зображення папороті, яке демонструє афінну [[самоподібність]]]]
[[Файл:Fractal fern explained.png|thumb|right|200px|Зображення папороті, яке демонструє афінну [[самоподібність]]]]


* При афінному перетворені [[пряма]] переходить в пряму.
* При [[Афінний простір|афінному]] перетворені [[пряма]] переходить в пряму.
** Якщо [[розмірність простору]] <math>{n}\ge 2</math>, то будь-яке перетворення простору (тобто [[бієкція]] простору на себе), яке переводить прямі в прямі, є афінним. Це визначення використовується в [[аксіома]]тичній побудові [[афінна геометрія|афінної геометрії]]
** Якщо [[розмірність простору]] <math>{n}\ge 2</math>, то будь-яке перетворення простору (тобто [[бієкція]] простору на себе), яке переводить прямі в прямі, є афінним. Це визначення використовується в [[аксіома]]тичній побудові [[афінна геометрія|афінної геометрії]]
* Окремим випадком афінних перетворень є [[ізометрія (математика)|ізометрії]] та [[перетворення подібності]].
* Окремим випадком афінних перетворень є [[ізометрія (математика)|ізометрії]] та [[перетворення подібності]].

Версія за 14:58, 7 травня 2024

Афінне перетворення (лат. affinis, «пов'язаний з») — відображення площини або простору в собі, при якому паралельні прямі переходять у паралельні прямі, пересічні — в пересічні, мимобіжні — в мимобіжні ().

Це можна записати у вигляді

де невироджена матриця і .

Інакше кажучи, відображення називається афінним, якщо його можна отримати таким способом:

  1. Обрати «новий» базис простору з «новим» початком координат ;
  2. Координатам x кожної точки простору поставити у відповідність нові координати f (x), які мають те саме положення в просторі відносно «нової» системи координат, яке координати x мали в «старій».

Представлення

Зазвичай лінійна алгебра використовує матриці для представлення лінійних перетворень, і векторну суму для представлення паралельних перенесень. За допомогою розширеної матриці можливо представити і те, і те як матричний добуток. Ця техніка вимагає розширити всі вектори додаванням «1» в кінці, всі матриці розширюються додаванням рядка нулів знизу, і колонки — вектора переноса — справа, а також одиниці в нижній правий кут. Якщо A матриця,

те саме, що

Таке представлення показує набір оборотних афінних перетворень як напівпрямий добуток Kn і GL(n, k). Афінні перетворення утворюють групу щодо операції композиції відображень. Ця група називається афінною групою.

Зазвичай матрично-векторний добуток завжди відображає початок координат на початок координат, і, таким чином, не може представляти перенесення, яке обов'язково переносить початок координат в іншу точку. Додаванням «1» до кожного вектора, вважаємо простір відображенним на підмножину простору з одним додатковим виміром. В цьому просторі, початковий простір займає підмножину в якій останній індекс 1. Таким чином початок координат початкового простору буде знаходитися в (0,0, … 0, 1). Перенесення всередині початкового простору в термінах лінійного перетворення простору з більшою кількістю вимірів стає можливим. Це є приклад однорідних координат.

Перевагою використання однорідних координат є те, що можливо комбінувати будь-яку кількість перетворень в одне шляхом перемноження матриць. Ця можливість використовується графічними програмами.

Властивості

Зображення папороті, яке демонструє афінну самоподібність
  • При афінному перетворені пряма переходить в пряму.
  • Окремим випадком афінних перетворень є ізометрії та перетворення подібності.
  • Афінні перетворення утворюють групу відносно композиції.
  • Окремим випадком перспективної колінеації є перспективно-афінна відповідність плоских полей, встановлена паралельним проектуванням. Ці властивості паралельного проектування дозволяють встановити ті співвідношення між окремими елементами предмету, які відображаються при кресленні, тобто є інваріантами перетворення паралельним проектуванням.

Типи афінних перетворень

  • Вільноафінне перетворення — афінне перетворення, що не має інваріантних точок.
  • Еквіафінне перетворення — афінне перетворення, що зберігає площу.
  • Перспективноафінне перетворення — афінне перетворення, що має принаймні дві інваріантні точки.
  • Центроафінне перетворення — афінне перетворення, що зберігає початок координат.

Варіації і узагальнення

  • В наведенному вище визначенні афінного перетворення можна використовувати будь-яке поле, а не тільки поле дійсних чисел .
  • Відображення між метричними просторами називають афінним, якщо воно переводить геодезичні лінії в геодезичні лінії (з урахуванням параметризації).
  • Афінні перетворення простору є підмножиною проективних перетворень того ж простору. В свою чергу, проективні перетворення простору можна представити як афінні перетворення простору .

Посилання