Гомотопія

Матеріал з Вікіпедії — вільної енциклопедії.
Перейти до: навігація, пошук

Гомотопія — в математиці поняття алгебричної топології, що формалізує поняття неперервної деформації одного об'єкта в інший. За допомогою гомотопії визначаються гомотопічні групи[en], що є важливими інваріантами в алгебричній топології.

Формальне визначення[ред.ред. код]

Нехай та топологічні простори і f та g — два неперервних відображення з простору в простір . Тоді відображення f називається гомотопним відображенню g, якщо існує неперервне відображення таке, що і для x ∈ X. Дане неперервне відображення називається гомотопією.

Пов'язані визначення[ред.ред. код]

Гомотопічна еквівалентність бублика і чашки
  • Гомотопічний інваріант — це характеристика простору, яка зберігається при гомотопічній еквівалентності топологічних просторів. Тобто, якщо два простори гомотопно еквіваленті, то вони мають однакову характеристику. Наприклад: зв'язність, фундаментальна група, ейлерова характеристика.
  • Якщо на деякій підмножині для всіх при , то називається гомотопією відносно , а і гомотопними відносно .
  • Ізотопія — гомотопія топологічного простору по топологічному простору тобто , в якій при будь-кому відображення є гомеоморфізмом на .

Гомотопічна еквівалентність[ред.ред. код]

  • Гомотопічна еквівалентність топологічних просторів і — пара неперервних відображень і така, що і , тут позначає гомотопічну еквівалентність відображень. В цьому випадку говорять, що і гомотопно еквівалентні, або з мають один гомотопний тип.

Властивості[ред.ред. код]

Рефлексивність. Якщо — деяке неперервне відображення, тоді функція визначена буде гомотопією між f і f.
Симетричність. Нехай відображення гомотопне відображенню і — відповідна гомотопія. Тоді g є гомотопним f з гомотопією .
Транзитивність. Нехай відображення гомотопне відображенню і — відповідна гомотопія. Нехай також відображення гомотопне відображенню і — відповідна гомотопія. Тоді Тоді f є гомотопним h з гомотопією:
  • Усі відображення є неперервними.
  • Якщо — неперервні відображення, і — гомотопія між і , то є гомотопією між і .

Приклади[ред.ред. код]

  • Якщо , то функції і є завжди є гомотопними. Гомотопія визначається:
  • Множини є гомотопічно еквівалентними, але не гомеоморфними.
  • Одиничне коло гомотопно еквівалентне простору .

Література[ред.ред. код]

  • Васильев В. А. Введение в топологию. — М.: ФАЗИС, 1997. — 132 с. — ISBN 5-7036-0036-7
  • Рохлин В. А., Фукс Д. Б. Начальный курс топологии. Геометрические главы. — М.: Наука, 1977
  • Спеньер Э. Алгебраическая топология. — М.: Мир, 1971